An in-house database-driven untargeted identification strategy for deep profiling of chemicalome in Chinese medicinal formula

仿形(计算机编程) 化学 四极飞行时间 数据库 中草药 质谱法 色谱法 计算机科学 中医药 串联质谱法 医学 操作系统 病理 替代医学
作者
Kexin Liu,Ning Li,Yinghao Yin,Zhu-Jun Zhong,Ping Li,Lifang Liu,Gui-Zhong Xin
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1666: 462862-462862 被引量:12
标识
DOI:10.1016/j.chroma.2022.462862
摘要

Deep profiling of chemicalome in Chinese medicinal formulas is vital for disclosing the secret underlying their effectiveness. To address this issue, an in-house database-driven untargeted identification strategy was proposed with the use of ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry. Firstly, an in-house mass spectral database for the analyzed herbs was constructed, and database querying was performed for rapid recognition of known compounds. Secondly, a chemical diagnostic characteristics algorithm was originally developed for deep mining unrecorded ions, and thus expanding coverage of components beyond the database. Additionally, we proposed evaluation criteria for the untargeted identification of compounds with different confidence levels. As a case study, the integrated strategy was applied to comprehensively characterize complex multi-type components in Gegen-Qinlian Decoction. A total of 381 compounds were characterized and annotated with four different confidence levels, and 88.40% of these annotated compounds were successfully re-identified in triplicate analyses with a different instrument. The integrated strategy was demonstrated powerful in deep profiling of chemicalome in Chinese medicinal formulas with higher throughput, analytical sharpness, and lower omission ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandy发布了新的文献求助10
1秒前
1秒前
整齐泥猴桃完成签到 ,获得积分10
2秒前
2秒前
dou关注了科研通微信公众号
2秒前
Jasper应助dingning采纳,获得10
3秒前
3秒前
木木木发布了新的文献求助10
3秒前
洛杉矶的奥斯卡完成签到,获得积分10
4秒前
huo应助nimeng123采纳,获得10
4秒前
--完成签到,获得积分20
4秒前
典雅的俊驰完成签到,获得积分10
4秒前
AHA完成签到,获得积分10
5秒前
胡123完成签到 ,获得积分20
5秒前
5秒前
Patience完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
欧啦啦完成签到,获得积分10
7秒前
buddy给buddy的求助进行了留言
7秒前
sujustin333完成签到,获得积分10
7秒前
三里墩头完成签到,获得积分10
9秒前
红豆抹茶完成签到,获得积分10
9秒前
Sandy完成签到,获得积分10
10秒前
huhu发布了新的文献求助10
11秒前
11秒前
大冰完成签到,获得积分10
11秒前
ldjldj_2004发布了新的文献求助10
11秒前
zhao发布了新的文献求助10
11秒前
AeroY完成签到,获得积分10
12秒前
小苹果完成签到,获得积分10
12秒前
lll完成签到,获得积分10
12秒前
12秒前
阳雾完成签到,获得积分10
12秒前
forever完成签到,获得积分10
12秒前
13秒前
13完成签到 ,获得积分10
13秒前
周涛完成签到,获得积分10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311586
求助须知:如何正确求助?哪些是违规求助? 2944410
关于积分的说明 8518837
捐赠科研通 2619769
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664704
邀请新用户注册赠送积分活动 649969