Deep Learning-based Probabilistic Autoencoder for Residential Energy Disaggregation: An Adversarial Approach

自编码 概率逻辑 计算机科学 一般化 人工智能 高斯过程 机器学习 统计模型 能源消耗 数据建模 能量(信号处理) 数据挖掘
作者
Halil Cimen,Ying Wu,Yanpeng Wu,Yacine Terriche,Juan C. Vasquez,Josep M. Guerrero
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tii.2022.3150334
摘要

Energy disaggregation is the process of disaggregating a household's total energy consumption into its appliance-level components. One of the limitations of energy disaggregation is its generalization capacity, which can be defined as the ability of the model to analyze new households. In this paper, a new energy disaggregation approach based on Adversarial Autoencoder (AAE) is proposed to create a generative model and enhance the generalization capacity. The proposed method has a probabilistic structure to handle uncertainties in the unseen data. By transforming the latent space from a deterministic structure to a gaussian prior distribution, AAE's decoder transforms into a generative model. The proposed approach is validated through experimental tests using two different datasets. The experimental results exhibit a 55% MAE performance increase compared to deterministic models and 7% compared to probabilistic models. In addition, considering the predictions made when the appliances are on, the AAE improves the performance by 16% for UKDALE and 36% for REDD dataset compared to state-of-art models. Moreover, the online analysis performance of AAE is examined in detail, and the disadvantages of instant predictions and the possible solutions are extensively discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
3秒前
aq发布了新的文献求助10
3秒前
jiang发布了新的文献求助10
3秒前
ma完成签到 ,获得积分10
4秒前
不配.应助木染采纳,获得10
5秒前
5秒前
厚礼蟹完成签到 ,获得积分10
7秒前
littleE发布了新的文献求助20
8秒前
poohpooh完成签到,获得积分10
8秒前
9秒前
A,w携念e行ོ完成签到,获得积分10
9秒前
aq完成签到,获得积分10
13秒前
BEN完成签到,获得积分10
13秒前
星辰大海应助Lazarus_x采纳,获得10
13秒前
15秒前
许大脚发布了新的文献求助10
15秒前
wuludie发布了新的文献求助10
16秒前
wuludie发布了新的文献求助10
17秒前
CMJ发布了新的文献求助20
17秒前
小研究牲完成签到,获得积分20
17秒前
木木彡发布了新的文献求助20
18秒前
柑橘应助聪明飞雪采纳,获得10
18秒前
琳chen发布了新的文献求助10
20秒前
21秒前
有且仅有发布了新的文献求助30
21秒前
numie完成签到,获得积分10
21秒前
KK完成签到,获得积分10
22秒前
22秒前
zzz完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
勤劳茗发布了新的文献求助10
27秒前
29秒前
30秒前
duansiyu完成签到,获得积分10
30秒前
30秒前
yenist完成签到,获得积分10
32秒前
bkagyin应助苗儿采纳,获得10
32秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400