Fast Orthogonal Projection for Hyperspectral Unmixing

端元 高光谱成像 正投影 像素 投影(关系代数) 对角线的 模式识别(心理学) 丰度估计 人工智能 计算机科学 基质(化学分析) 数学 算法 计算机视觉 丰度(生态学) 几何学 生物 复合材料 材料科学 渔业
作者
Xuanwen Tao,Mercedes E. Paoletti,Lirong Han,Juan M. Haut,Peng Ren,Javier Plaza,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2022.3150263
摘要

Spectral unmixing plays a vital role in hyperspectral image analysis. It mainly consists of two procedures, i.e., endmember extraction and abundance estimation. Although most algorithms for each of the two procedures may exhibit good performance, few studies have been done considering both problems simultaneously. Therefore, hyperspectral unmixing accuracy is normally achieved by exploring all possible combinations of the two types of algorithms, which renders high computational overloads. We propose a novel orthogonal projection framework to conduct fast hyperspectral unmixing. It addresses both endmember extraction and abundance estimation with orthogonal projection endmember (OPE) and orthogonal projection abundance (OPA). Especially, the pixel with the largest orthogonal projection on any pixel is considered to be an endmember. We randomly choose one pixel from the hyperspectral data to compute the orthogonal projections of all pixels and extract the pixel with the largest projection as the first endmember. To avoid extracting the same endmembers, we compute orthogonal projections of all pixels to endmembers that have been previously extracted, and the pixel with the largest projection is considered as the next endmember. In terms of abundance estimation, we also utilize the concept of orthogonal projection and search for a diagonal matrix whose multiplication with the endmember matrix is not only a square matrix but also a diagonal matrix. Then, we exploit some specific matrix operations to estimate the abundance of each endmember at every pixel. We have evaluated the proposed OPE and OPA algorithms on synthetic and real data, and the experimental results have validated their effectiveness and efficiency in hyperspectral unmixing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的念芹完成签到,获得积分10
1秒前
dhfify发布了新的文献求助10
1秒前
欢呼山雁发布了新的文献求助30
1秒前
dhfify发布了新的文献求助10
1秒前
t1234567发布了新的文献求助10
2秒前
2秒前
2秒前
丰硕发布了新的文献求助10
2秒前
2秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
dhfify发布了新的文献求助10
3秒前
3秒前
小学猹发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助Elian采纳,获得10
4秒前
酷波er应助LiChard采纳,获得10
4秒前
iNk应助我是美丽采纳,获得20
4秒前
4秒前
5秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286