Fast Orthogonal Projection for Hyperspectral Unmixing

端元 高光谱成像 正投影 像素 投影(关系代数) 对角线的 模式识别(心理学) 丰度估计 人工智能 计算机科学 基质(化学分析) 数学 算法 计算机视觉 丰度(生态学) 几何学 生物 复合材料 材料科学 渔业
作者
Xuanwen Tao,Mercedes E. Paoletti,Lirong Han,Juan M. Haut,Peng Ren,Javier Plaza,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2022.3150263
摘要

Spectral unmixing plays a vital role in hyperspectral image analysis. It mainly consists of two procedures, i.e., endmember extraction and abundance estimation. Although most algorithms for each of the two procedures may exhibit good performance, few studies have been done considering both problems simultaneously. Therefore, hyperspectral unmixing accuracy is normally achieved by exploring all possible combinations of the two types of algorithms, which renders high computational overloads. We propose a novel orthogonal projection framework to conduct fast hyperspectral unmixing. It addresses both endmember extraction and abundance estimation with orthogonal projection endmember (OPE) and orthogonal projection abundance (OPA). Especially, the pixel with the largest orthogonal projection on any pixel is considered to be an endmember. We randomly choose one pixel from the hyperspectral data to compute the orthogonal projections of all pixels and extract the pixel with the largest projection as the first endmember. To avoid extracting the same endmembers, we compute orthogonal projections of all pixels to endmembers that have been previously extracted, and the pixel with the largest projection is considered as the next endmember. In terms of abundance estimation, we also utilize the concept of orthogonal projection and search for a diagonal matrix whose multiplication with the endmember matrix is not only a square matrix but also a diagonal matrix. Then, we exploit some specific matrix operations to estimate the abundance of each endmember at every pixel. We have evaluated the proposed OPE and OPA algorithms on synthetic and real data, and the experimental results have validated their effectiveness and efficiency in hyperspectral unmixing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HopeStar完成签到,获得积分10
刚刚
1秒前
失眠的霸完成签到,获得积分10
2秒前
RHLVE应助戚薇采纳,获得20
2秒前
2秒前
wjx发布了新的文献求助10
2秒前
shuangcheng发布了新的文献求助10
2秒前
charm12发布了新的文献求助10
2秒前
研友_VZG7GZ应助fyfly采纳,获得10
3秒前
3秒前
全糖完成签到,获得积分10
3秒前
吴志新完成签到,获得积分10
3秒前
心旷神怡发布了新的文献求助10
3秒前
Jiaocm完成签到,获得积分10
4秒前
海的蓝色是水完成签到,获得积分20
4秒前
天天快乐应助明天过后采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
所所应助吴真好采纳,获得10
6秒前
乐观小之应助wogua采纳,获得10
6秒前
隐形曼青应助wogua采纳,获得10
6秒前
7秒前
清脆惜寒应助Wang采纳,获得30
7秒前
标致乐双发布了新的文献求助10
8秒前
Catalina_S应助太阳采纳,获得20
8秒前
华仔应助刘桑桑采纳,获得10
8秒前
9秒前
10秒前
深情安青应助123456采纳,获得10
10秒前
清爽千亦完成签到 ,获得积分10
10秒前
10秒前
周周完成签到 ,获得积分10
11秒前
读书妖精文亭逐完成签到,获得积分10
11秒前
11秒前
管歌发布了新的文献求助10
11秒前
leez完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646