Eff-UNet++: A novel architecture for plant leaf segmentation and counting

分割 计算机科学 编码器 人工智能 模式识别(心理学) 图像分割 残余物 计算机视觉 算法 操作系统
作者
Sandesh Bhagat,Manesh Kokare,Vineet Haswani,Praful Hambarde,Ravi Kamble
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101583-101583 被引量:46
标识
DOI:10.1016/j.ecoinf.2022.101583
摘要

Leaf segmentation learns more about leaf-level traits such as leaf area, count, stress, and development phases. In plant phenotyping, segmentation and counting of plant organs like leaves are a major challenge due to considerable overlap between leaves and varying environmental conditions, including brightness variation and shadow, blur due to wind. Further, the plant's inherent challenges, such as the leaf texture, genotype, size, shape, and density variation of leaves, make the leaf segmentation task more complex. To meet these challenges, the present work proposes a novel method for leaf segmentation and counting employing Eff-Unet++, an encoder-decoder-based architecture. This architecture uses EfficientNet-B4 as an encoder for accurate feature extraction. The redesigned skip connections and residual block in the decoder utilize encoder output and help to address the information degradation problem. In addition, the redesigned skip connections reduce the computational complexity. The lateral output layer is introduced to aggregate the low-level to high-level features from the decoder, which improves segmentation performance. The proposed method validates its performance on three datasets: KOMATSUNA dataset, Multi-Modality Plant Imagery Dataset (MSU-PID), and Computer Vision for Plant Phenotyping dataset (CVPPP). The proposed approach outperforms the existing state-of-the-art methods UNet, UNet++, Residual-UNet, InceptionResv2-UNet, and DeeplabV3 leaf segmentation results achieve best dice (BestDice): 83.44, 71.17, 78.27 and Foreground-Background Dice (FgBgDice): 97.48, 91.35, 96.38 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively. In addition, for leaf counting the results are difference in count (DiffFG): 0.11, 0.03, 0.12 and Absolute Difference in count (AbsDiffFG): 0.21, 0.38, 1.27 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively. • The proposed Eff-UNet++ model uses EfficientNet-B4 encoder with modified UNet++ architecture for plant leaf segmentation. • The redesigned skip connection of U-Net++ and residual block in the decoder improves model performance and reduces parameter. • The lateral-output layer aggregates the low-level to high-level feature from the decoder, and shows improvement in results. • Extensive experimentation is done and results are compared with state-of-the-art methods for leaf segmentation and counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助海绵小方块采纳,获得10
1秒前
www发布了新的文献求助10
2秒前
2秒前
2秒前
bkagyin应助奔奔采纳,获得10
3秒前
4秒前
李梦瑾完成签到,获得积分10
4秒前
7秒前
ZengJuan发布了新的文献求助10
7秒前
时光如梭发布了新的文献求助10
8秒前
FashionBoy应助芷毓_Tian采纳,获得10
8秒前
科研小萌新完成签到,获得积分10
8秒前
yufeng发布了新的文献求助10
9秒前
传奇3应助喜悦的月光采纳,获得10
9秒前
共享精神应助Sygganggang采纳,获得10
10秒前
阿利呀发布了新的文献求助20
12秒前
14秒前
猫咪老师应助逆旅采纳,获得30
14秒前
14秒前
星辰大海应助何何何采纳,获得10
15秒前
HEIKU应助吃不起橘子了采纳,获得10
16秒前
16秒前
zhang完成签到,获得积分10
16秒前
17秒前
18秒前
xinyue发布了新的文献求助10
20秒前
Hu发布了新的文献求助10
22秒前
害羞的书琴完成签到,获得积分20
22秒前
Jasper应助just flow采纳,获得30
23秒前
方越应助沐风采纳,获得10
23秒前
小马甲应助阿利呀采纳,获得20
23秒前
何何何完成签到,获得积分10
24秒前
imbecile完成签到 ,获得积分10
26秒前
yufeng完成签到,获得积分10
26秒前
时光如梭发布了新的文献求助10
27秒前
27秒前
28秒前
安静幻枫应助xxxxx采纳,获得30
31秒前
31秒前
我是老大应助寒冷寒安采纳,获得10
32秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596