亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Eff-UNet++: A novel architecture for plant leaf segmentation and counting

分割 计算机科学 编码器 人工智能 模式识别(心理学) 图像分割 残余物 计算机视觉 算法 操作系统
作者
Sandesh Bhagat,Manesh Kokare,Vineet Haswani,Praful Hambarde,Ravi Kamble
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:68: 101583-101583 被引量:46
标识
DOI:10.1016/j.ecoinf.2022.101583
摘要

Leaf segmentation learns more about leaf-level traits such as leaf area, count, stress, and development phases. In plant phenotyping, segmentation and counting of plant organs like leaves are a major challenge due to considerable overlap between leaves and varying environmental conditions, including brightness variation and shadow, blur due to wind. Further, the plant's inherent challenges, such as the leaf texture, genotype, size, shape, and density variation of leaves, make the leaf segmentation task more complex. To meet these challenges, the present work proposes a novel method for leaf segmentation and counting employing Eff-Unet++, an encoder-decoder-based architecture. This architecture uses EfficientNet-B4 as an encoder for accurate feature extraction. The redesigned skip connections and residual block in the decoder utilize encoder output and help to address the information degradation problem. In addition, the redesigned skip connections reduce the computational complexity. The lateral output layer is introduced to aggregate the low-level to high-level features from the decoder, which improves segmentation performance. The proposed method validates its performance on three datasets: KOMATSUNA dataset, Multi-Modality Plant Imagery Dataset (MSU-PID), and Computer Vision for Plant Phenotyping dataset (CVPPP). The proposed approach outperforms the existing state-of-the-art methods UNet, UNet++, Residual-UNet, InceptionResv2-UNet, and DeeplabV3 leaf segmentation results achieve best dice (BestDice): 83.44, 71.17, 78.27 and Foreground-Background Dice (FgBgDice): 97.48, 91.35, 96.38 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively. In addition, for leaf counting the results are difference in count (DiffFG): 0.11, 0.03, 0.12 and Absolute Difference in count (AbsDiffFG): 0.21, 0.38, 1.27 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively. • The proposed Eff-UNet++ model uses EfficientNet-B4 encoder with modified UNet++ architecture for plant leaf segmentation. • The redesigned skip connection of U-Net++ and residual block in the decoder improves model performance and reduces parameter. • The lateral-output layer aggregates the low-level to high-level feature from the decoder, and shows improvement in results. • Extensive experimentation is done and results are compared with state-of-the-art methods for leaf segmentation and counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckkit完成签到 ,获得积分10
5秒前
浮名半生发布了新的文献求助10
13秒前
14秒前
15秒前
北极星完成签到,获得积分10
21秒前
木木完成签到 ,获得积分10
23秒前
23秒前
power完成签到,获得积分10
25秒前
shaylie完成签到 ,获得积分10
30秒前
拼搏的潘子完成签到,获得积分10
38秒前
脑洞疼应助科研通管家采纳,获得30
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
Ava应助婷子采纳,获得10
48秒前
52秒前
负责吃饭完成签到,获得积分10
55秒前
负责吃饭发布了新的文献求助30
59秒前
无言完成签到,获得积分10
59秒前
顾矜应助wind采纳,获得10
1分钟前
1分钟前
sam关闭了sam文献求助
1分钟前
1分钟前
小张完成签到 ,获得积分10
1分钟前
婷子发布了新的文献求助10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
Timon完成签到,获得积分10
1分钟前
机智觅柔完成签到 ,获得积分10
1分钟前
孤鸿.完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
wind发布了新的文献求助10
1分钟前
wind完成签到,获得积分10
1分钟前
澄明的晨星完成签到,获得积分10
1分钟前
P_Chem完成签到,获得积分10
1分钟前
光亮代玉完成签到 ,获得积分10
1分钟前
鲤鱼越越完成签到 ,获得积分10
1分钟前
1分钟前
害羞便当完成签到 ,获得积分10
2分钟前
无言发布了新的文献求助30
2分钟前
嘉心糖完成签到,获得积分0
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144954
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622