恒化器
外稃(植物学)
独特性
数学
消光(光学矿物学)
功能(生物学)
纯数学
应用数学
组合数学
数学分析
生物
生态学
细菌
古生物学
遗传学
禾本科
进化生物学
作者
Ningning Ye,Zengyun Hu,Zhidong Teng
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:21 (4): 1361-1361
被引量:1
摘要
<p style='text-indent:20px;'>In this paper, the periodic solution and extinction in a periodic chemostat model with delay in microorganism growth are investigated. The positivity and ultimate boundedness of solutions are firstly obtained. Next, the necessary and sufficient conditions on the existence of positive <inline-formula><tex-math id="M1">\begin{document}$ \omega $\end{document}</tex-math></inline-formula>-periodic solutions are established by constructing Poincaré map and using the Whyburn Lemma and Leray-Schauder degree theory. Furthermore, according to the implicit function theorem, the uniqueness of the positive periodic solution is obtained when delay <inline-formula><tex-math id="M2">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> is small enough. Finally, the necessary and sufficient conditions for the extinction of microorganism species are established.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI