Boosting Vascular Imaging‐Performance and Systemic Biosafety of Ultra‐Small NaGdF4 Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Co‐Polymer

生物安全 材料科学 磁共振成像 聚合物 纳米颗粒 共聚物 生物医学工程 肾源性系统性纤维化 纳米技术 磁共振造影剂 全身循环 放射科 医学 病理 复合材料 冶金 内科学
作者
Zhilin Jiang,Bin Xia,Feng Ren,Bolin Bao,Wei Xing,Tao He,Zhen Li
出处
期刊:Small methods [Wiley]
卷期号:6 (3) 被引量:5
标识
DOI:10.1002/smtd.202101145
摘要

Revealing the anatomical structures, functions, and distribution of vasculature via contrast agent (CA) enhanced magnetic resonance imaging (MRI) is crucial for precise medical diagnosis and therapy. The clinically used MRI CAs strongly rely on Gd-chelates, which exhibit low T1 relaxivities and high risks of nephrogenic systemic fibrosis (NSF) for patients with renal dysfunction. It is extremely important to develop high-performance and safe CAs for MRI. Herein, it is reported that ultra-small NaGdF4 nanoparticles (UGNs) can serve as an excellent safe MRI CA via surface engineering with rationally designed novel hydrophilic block co-polymer (BPn ). By optimizing the polymer molecular weights, the polymer-functionalized UGNs (i.e., UGNs-BP14 ) are obtained to exhibit remarkably higher relaxivity (11.8 mm-1 s-1 at 3.0 T) than Gd-DTPA (3.6 mm-1 s-1 ) due to their ultracompact and abundant hydrophilic surface coating. The high performance of UGNs-BP14 enables us to sensitively visualize microvasculature with a small diameter of ≈0.17 mm for up to 2 h, which is the thinnest blood vessel and the longest time window for low field (1.0 T) MR angiography ever reported, and cannot be achieved by using the clinically used Gd-DTPA under the same conditions. More importantly, renal clearable UGNs-BP14 show lower risks of inducing NSF in comparison with Gd-DTPA due to their negligible release of Gd3+ ions after modification with the novel hydrophilic block copolymer. The study presents a novel avenue for boosting imaging-performance and systemic biosafety of UGNs as a robust MRI CA with great potential in precise diagnosis of vasculature-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
min发布了新的文献求助10
2秒前
2秒前
英俊的铭应助花痴的幻儿采纳,获得10
3秒前
N1neDDDD发布了新的文献求助10
5秒前
医学帅哥完成签到,获得积分10
6秒前
上官若男应助DY采纳,获得10
7秒前
隐形曼青应助酷酷的麦片采纳,获得10
7秒前
dsj完成签到,获得积分10
8秒前
Dsivan发布了新的文献求助10
8秒前
上官若男应助王宇轩采纳,获得20
8秒前
若尘发布了新的文献求助10
8秒前
9秒前
sleep应助QQ采纳,获得10
10秒前
科目三应助QQ采纳,获得30
10秒前
Orange应助Gulziba采纳,获得10
10秒前
彭于彦祖应助QQ采纳,获得30
10秒前
隐形曼青应助QQ采纳,获得10
10秒前
畅快友儿完成签到,获得积分10
10秒前
打打应助韩瑞采纳,获得10
10秒前
高成浩发布了新的文献求助10
10秒前
10秒前
11秒前
小福fufu完成签到 ,获得积分20
12秒前
14秒前
醉熏的远航完成签到,获得积分10
14秒前
Aston完成签到,获得积分10
15秒前
怡然凝云发布了新的文献求助10
16秒前
16秒前
Dsivan完成签到,获得积分10
16秒前
包容念文发布了新的文献求助10
17秒前
17秒前
18秒前
yuequ完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
JJJ驳回了脑洞疼应助
19秒前
从来都不会放弃zr完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507241
求助须知:如何正确求助?哪些是违规求助? 4602647
关于积分的说明 14482442
捐赠科研通 4536668
什么是DOI,文献DOI怎么找? 2486306
邀请新用户注册赠送积分活动 1468882
关于科研通互助平台的介绍 1441329