Boosting Vascular Imaging‐Performance and Systemic Biosafety of Ultra‐Small NaGdF4 Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Co‐Polymer

生物安全 材料科学 磁共振成像 聚合物 纳米颗粒 共聚物 生物医学工程 肾源性系统性纤维化 纳米技术 磁共振造影剂 全身循环 放射科 医学 病理 复合材料 冶金 内科学
作者
Zhilin Jiang,Bin Xia,Feng Ren,Bolin Bao,Wei Xing,Tao He,Zhen Li
出处
期刊:Small methods [Wiley]
卷期号:6 (3) 被引量:5
标识
DOI:10.1002/smtd.202101145
摘要

Revealing the anatomical structures, functions, and distribution of vasculature via contrast agent (CA) enhanced magnetic resonance imaging (MRI) is crucial for precise medical diagnosis and therapy. The clinically used MRI CAs strongly rely on Gd-chelates, which exhibit low T1 relaxivities and high risks of nephrogenic systemic fibrosis (NSF) for patients with renal dysfunction. It is extremely important to develop high-performance and safe CAs for MRI. Herein, it is reported that ultra-small NaGdF4 nanoparticles (UGNs) can serve as an excellent safe MRI CA via surface engineering with rationally designed novel hydrophilic block co-polymer (BPn ). By optimizing the polymer molecular weights, the polymer-functionalized UGNs (i.e., UGNs-BP14 ) are obtained to exhibit remarkably higher relaxivity (11.8 mm-1 s-1 at 3.0 T) than Gd-DTPA (3.6 mm-1 s-1 ) due to their ultracompact and abundant hydrophilic surface coating. The high performance of UGNs-BP14 enables us to sensitively visualize microvasculature with a small diameter of ≈0.17 mm for up to 2 h, which is the thinnest blood vessel and the longest time window for low field (1.0 T) MR angiography ever reported, and cannot be achieved by using the clinically used Gd-DTPA under the same conditions. More importantly, renal clearable UGNs-BP14 show lower risks of inducing NSF in comparison with Gd-DTPA due to their negligible release of Gd3+ ions after modification with the novel hydrophilic block copolymer. The study presents a novel avenue for boosting imaging-performance and systemic biosafety of UGNs as a robust MRI CA with great potential in precise diagnosis of vasculature-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liumiaomiao发布了新的文献求助10
刚刚
刚刚
arui完成签到,获得积分10
刚刚
qinqinwy完成签到,获得积分10
刚刚
wnkwef完成签到 ,获得积分10
1秒前
1秒前
海子发布了新的文献求助20
1秒前
aichifan完成签到,获得积分10
2秒前
左左完成签到,获得积分10
2秒前
2秒前
3秒前
老实善愁发布了新的文献求助10
3秒前
3秒前
3秒前
Serendipity完成签到,获得积分10
4秒前
纸农完成签到,获得积分10
4秒前
bkagyin应助猫尔儿采纳,获得30
4秒前
aiyu完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
一坞鱼完成签到,获得积分10
6秒前
hanzhua132发布了新的文献求助10
6秒前
11220发布了新的文献求助10
6秒前
6秒前
addd完成签到,获得积分20
6秒前
LX发布了新的文献求助10
7秒前
7秒前
Youth完成签到,获得积分10
7秒前
自信的雨安完成签到,获得积分20
7秒前
洋葱王子发布了新的文献求助10
7秒前
orixero应助动听的冬日采纳,获得10
7秒前
marcl完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
大个应助qhg采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
yi完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764