Serum metabolic profiles and metal levels of patients with multiple sclerosis and patients with neuromyelitis optica spectrum disorders - NMR spectroscopy and ICP–MS studies

视神经脊髓炎 多发性硬化 代谢物 医学 内科学 方差分析 胃肠病学 病理 免疫学
作者
Beata Toczyłowska,Elżbieta Ziemińska,Aleksandra Podlecka-Piętowska,Anna Ruszczyńska,Małgorzata Chalimoniuk
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:60: 103672-103672 被引量:2
标识
DOI:10.1016/j.msard.2022.103672
摘要

Neuromyelitis optica spectrum disorder (NMOSD) is a disease misdiagnosed with multiple sclerosis (MS). We hypothesized that the serum metabolic profile could be helpful in the differentiation of both diseases in an early stage.We included controls, patients with MS diagnosed according to the McDonald criteria of 2010, and patients with NMOSD diagnosed according to the criteria from 2015. Blood samples were collected on clots from all participants after overnight overfasting. We obtained metabolic profiles using proton magnetic resonance spectroscopy (1HNMR) of serum hydrophilic and hydrophobic compounds. Serum metal levels were measured using isotope-specific detection mass spectrometry (ICP-MS). For statistical analyzes, we used ANOVA tests and multivariate analysis (MVA) - orthogonal partial least square discriminant analysis (OPLS-DA).We analyzed metabolite levels in patient groups compared to controls. We observed significantly different levels of ten metabolite signals in patients with MS vs controls and eighteen metabolite signals in patients with NMSOD vs controls. We observed significantly different levels of five signals in patients with MS vs NMOSD. In the MVA analysis of patient groups, we indicated compounds that most differentiated the groups. All of these compounds are involved in cycles connected to the inflammation process and/or oxidative stress. The results of metallomics studies confirmed metal participation in these processes.It is possible to distinguish patients with MS and NMOSD from controls using ANOVA and MVA tests. The chosen metabolite profile analyzes might possibly be helpful in distinguishing the two diseases from each other in some seronegative and radiologically negative cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泽泽发布了新的文献求助10
2秒前
机智的毛毛虫完成签到,获得积分10
2秒前
djy关注了科研通微信公众号
3秒前
淡然觅荷完成签到 ,获得积分10
5秒前
科研小曾关注了科研通微信公众号
6秒前
活泼蓝完成签到,获得积分10
8秒前
med1640完成签到,获得积分10
13秒前
唠叨的昊焱完成签到,获得积分20
13秒前
13秒前
liy41完成签到 ,获得积分10
17秒前
yunli发布了新的文献求助10
18秒前
18秒前
早睡能长个完成签到,获得积分10
19秒前
Emma发布了新的文献求助10
20秒前
20秒前
22秒前
老实的逊完成签到,获得积分10
23秒前
朴实香露发布了新的文献求助10
24秒前
25秒前
内向的小凡完成签到,获得积分10
25秒前
岳莹晓完成签到 ,获得积分10
26秒前
Ttttt发布了新的文献求助100
26秒前
28秒前
djy发布了新的文献求助10
29秒前
31秒前
黎明的第一道曙光完成签到 ,获得积分10
31秒前
冷静的飞槐完成签到,获得积分20
31秒前
Ava应助丘山采纳,获得10
31秒前
orixero应助重要的天空采纳,获得10
32秒前
包容若风完成签到,获得积分10
32秒前
小东西完成签到,获得积分20
32秒前
34秒前
34秒前
小东西发布了新的文献求助10
37秒前
66666完成签到,获得积分20
37秒前
丘比特应助realtimes采纳,获得10
38秒前
俏皮雨雪发布了新的文献求助10
38秒前
wbero完成签到,获得积分10
38秒前
香蕉觅云应助明理纸鹤采纳,获得10
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Population Genetics 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3493286
求助须知:如何正确求助?哪些是违规求助? 3079172
关于积分的说明 9158418
捐赠科研通 2771905
什么是DOI,文献DOI怎么找? 1521249
邀请新用户注册赠送积分活动 705040
科研通“疑难数据库(出版商)”最低求助积分说明 702656