Multi-Object Tracking in Satellite Videos With Graph-Based Multitask Modeling

计算机科学 BitTorrent跟踪器 视频跟踪 人工智能 图形 计算机视觉 目标检测 对象(语法) 跟踪(教育) 可视化 眼动 模式识别(心理学) 理论计算机科学 心理学 教育学
作者
Qibin He,Xian Sun,Zhiyuan Yan,Beibei Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:29
标识
DOI:10.1109/tgrs.2022.3152250
摘要

Recently, satellite video has become an emerging means of earth observation, providing the possibility of tracking moving objects. However, the existing multi-object trackers are commonly designed for natural scenes without considering the characteristics of remotely sensed data. In addition, most trackers are composed of two independent stages of detection and reidentification (ReID), which means that they cannot be mutually promoted. To this end, we propose an end-to-end online framework, which is called TGraM, for multi-object tracking in satellite videos. It models multi-object tracking as a graph information reasoning procedure from the multitask learning perspective. Specifically, a graph-based spatiotemporal reasoning module is presented to mine the potential high-order correlations between video frames. Furthermore, considering the inconsistency of optimization objectives between detection and ReID, a multitask gradient adversarial learning strategy is designed to regularize each task-specific network. In addition, aiming at the data scarcity in this field, a large-scale and high-resolution Jilin-1 satellite video dataset for multi-object tracking (AIR-MOT) is built for the experiments. Compared with state-of-the-art multi-object trackers, TGraM achieves efficient collaborative learning between detection and ReID, improving the tracking accuracy by 1.2 multiple object tracking accuracy. The code and dataset will be available online ( https://github.com/HeQibin/TGraM ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘀嘀嘀发布了新的文献求助10
刚刚
lalala发布了新的文献求助30
1秒前
文献发布了新的文献求助10
1秒前
4秒前
4秒前
务实静槐完成签到,获得积分10
4秒前
hmfyl完成签到,获得积分10
4秒前
在水一方应助huco采纳,获得10
5秒前
Jilin完成签到 ,获得积分10
5秒前
6秒前
6秒前
天天快乐应助小羊采纳,获得10
6秒前
Vashon发布了新的文献求助10
8秒前
星光发布了新的文献求助20
8秒前
Accepted发布了新的文献求助10
9秒前
chun发布了新的文献求助10
10秒前
简单的丑完成签到 ,获得积分10
10秒前
天天向上完成签到 ,获得积分10
11秒前
费慕青发布了新的文献求助10
11秒前
13秒前
文献完成签到,获得积分20
13秒前
13秒前
JamesPei应助mike5492采纳,获得10
14秒前
14秒前
15秒前
16秒前
16秒前
17秒前
小羊发布了新的文献求助10
17秒前
大漂亮发布了新的文献求助10
18秒前
大模型应助否认冶游史采纳,获得10
18秒前
19秒前
19秒前
19秒前
冷冻不冷完成签到,获得积分10
21秒前
风卷云淡发布了新的文献求助10
22秒前
李健应助科研通管家采纳,获得10
23秒前
soong发布了新的文献求助10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919