亚型
聚类分析
差异(会计)
水准点(测量)
计算机科学
分歧(语言学)
差速器(机械装置)
分布(数学)
数据挖掘
计算生物学
生物
统计
人工智能
数学
会计
大地测量学
工程类
数学分析
哲学
业务
航空航天工程
语言学
程序设计语言
地理
作者
Yiwei Meng,Yanhong Huang,Xiao Chang,Xiaoping Liu,Luonan Chen
摘要
Identifying differential genes over conditions provides insights into the mechanisms of biological processes and disease progression. Here we present an approach, the Kullback-Leibler divergence-based differential distribution (klDD), which provides a flexible framework for quantifying changes in higher-order statistical information of genes including mean and variance/covariation. The method can well detect subtle differences in gene expression distributions in contrast to mean or variance shifts of the existing methods. In addition to effectively identifying informational genes in terms of differential distribution, klDD can be directly applied to cancer subtyping, single-cell clustering and disease early-warning detection, which were all validated by various benchmark datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI