LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

机器人 里程计 人工智能 同时定位和映射 计算机科学 计算机视觉 基本事实 背景(考古学) 可扩展性 搜救 城市搜救 激光雷达 稳健性(进化) 地形 实时计算 移动机器人 遥感 数据库 地理 地图学 基因 考古 化学 生物化学
作者
Yun Chang,Kamak Ebadi,Christopher E. Denniston,Muhammad Fadhil Ginting,Antoni Rosinol,Andrzej Reinke,Matteo Palieri,Jingnan Shi,Amita Chatterjee,Benjamin Morrell,Ali–akbar Agha–mohammadi,Luca Carlone
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 9175-9182 被引量:18
标识
DOI:10.1109/lra.2022.3191204
摘要

Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this letter reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁应助yao chen采纳,获得10
刚刚
大羊羊发布了新的文献求助10
1秒前
2秒前
静静发布了新的文献求助10
3秒前
黄饱饱发布了新的文献求助30
3秒前
哈哈镜阿姐应助拼搏念蕾采纳,获得10
3秒前
3秒前
4秒前
peili发布了新的文献求助30
4秒前
4秒前
xiao发布了新的文献求助10
4秒前
宁日富一日完成签到 ,获得积分10
5秒前
逍遥游发布了新的文献求助10
6秒前
大模型应助淡淡的素采纳,获得10
7秒前
思源应助HJJHJH采纳,获得10
7秒前
7秒前
迫切发布了新的文献求助10
8秒前
我是老大应助LIU采纳,获得10
9秒前
浮游应助李春鸿采纳,获得10
9秒前
泡儿夫发布了新的文献求助10
10秒前
研友_VZG7GZ应助lin采纳,获得10
10秒前
沉默的鸡翅完成签到 ,获得积分10
11秒前
爆米花应助deepseek采纳,获得10
11秒前
hhh123完成签到,获得积分10
12秒前
TH完成签到 ,获得积分10
12秒前
可耐的问柳完成签到 ,获得积分10
12秒前
buhuidanhuixue完成签到,获得积分10
12秒前
yao chen发布了新的文献求助10
13秒前
liuhuayaxi完成签到,获得积分10
13秒前
静静完成签到,获得积分10
13秒前
许容完成签到,获得积分10
15秒前
852应助sjy采纳,获得10
15秒前
慕青应助寒夏采纳,获得10
15秒前
奥马珠单抗完成签到,获得积分10
16秒前
胡辣椒麻鸡完成签到,获得积分10
17秒前
可不完成签到,获得积分10
17秒前
julian190完成签到,获得积分10
18秒前
不知完成签到,获得积分10
18秒前
奋斗的小鸟完成签到 ,获得积分10
18秒前
破防的陈ber完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913