亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

机器人 里程计 人工智能 同时定位和映射 计算机科学 计算机视觉 基本事实 背景(考古学) 可扩展性 搜救 城市搜救 激光雷达 稳健性(进化) 地形 实时计算 移动机器人 遥感 数据库 地理 地图学 基因 考古 化学 生物化学
作者
Yun Chang,Kamak Ebadi,Christopher E. Denniston,Muhammad Fadhil Ginting,Antoni Rosinol,Andrzej Reinke,Matteo Palieri,Jingnan Shi,Amita Chatterjee,Benjamin Morrell,Ali–akbar Agha–mohammadi,Luca Carlone
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 9175-9182 被引量:18
标识
DOI:10.1109/lra.2022.3191204
摘要

Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this letter reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fortune发布了新的文献求助10
刚刚
颜安完成签到,获得积分20
13秒前
张张完成签到 ,获得积分10
15秒前
18秒前
Fortune完成签到,获得积分10
22秒前
Vincent发布了新的文献求助10
23秒前
爆米花应助lzmcsp采纳,获得10
23秒前
31秒前
BowieHuang应助科研通管家采纳,获得10
31秒前
李健应助科研通管家采纳,获得10
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
Vincent完成签到,获得积分10
37秒前
蓝色牛马完成签到,获得积分10
43秒前
xuzb发布了新的文献求助10
47秒前
搜集达人应助蓝色牛马采纳,获得10
49秒前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
lzmcsp完成签到,获得积分10
1分钟前
andrele发布了新的文献求助200
1分钟前
1分钟前
颜安发布了新的文献求助10
1分钟前
蓝色牛马发布了新的文献求助10
1分钟前
坦率的诗蕾完成签到 ,获得积分10
1分钟前
_ban完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
在水一方应助Fiy采纳,获得10
2分钟前
2分钟前
2分钟前
Fiy发布了新的文献求助10
2分钟前
wmz完成签到 ,获得积分10
2分钟前
2分钟前
lyw发布了新的文献求助10
3分钟前
andrele发布了新的文献求助10
3分钟前
张岩完成签到,获得积分10
3分钟前
KsL2177完成签到 ,获得积分10
3分钟前
我是老大应助湫栗采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507