LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

机器人 里程计 人工智能 同时定位和映射 计算机科学 计算机视觉 基本事实 背景(考古学) 可扩展性 搜救 城市搜救 激光雷达 稳健性(进化) 地形 实时计算 移动机器人 遥感 数据库 地理 地图学 考古 生物化学 化学 基因
作者
Yun Chang,Kamak Ebadi,Christopher E. Denniston,Muhammad Fadhil Ginting,Antoni Rosinol,Andrzej Reinke,Matteo Palieri,Jingnan Shi,Amita Chatterjee,Benjamin Morrell,Ali–akbar Agha–mohammadi,Luca Carlone
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 9175-9182 被引量:18
标识
DOI:10.1109/lra.2022.3191204
摘要

Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this letter reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
konekone完成签到,获得积分10
1秒前
2秒前
史迪仔崽发布了新的文献求助10
3秒前
3秒前
bkagyin应助where采纳,获得10
4秒前
YA发布了新的文献求助10
5秒前
NexusExplorer应助Angelawin采纳,获得10
5秒前
Akim应助Y哦莫哦莫采纳,获得10
5秒前
6秒前
kiminonawa应助zj采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Grace发布了新的文献求助30
7秒前
Lucas应助科研通管家采纳,获得30
7秒前
pluto应助uu采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
babeN关注了科研通微信公众号
7秒前
shinysparrow应助taoeric采纳,获得200
7秒前
李爱国应助gqf采纳,获得10
7秒前
lirongcas发布了新的文献求助10
8秒前
8秒前
8秒前
里埃尔塞因斯完成签到 ,获得积分10
8秒前
emmaguo713发布了新的文献求助30
9秒前
biye完成签到,获得积分10
10秒前
HEYATIAN完成签到 ,获得积分20
10秒前
高高小萱发布了新的文献求助10
12秒前
彭于晏应助Aurora采纳,获得10
12秒前
12秒前
saf0852发布了新的文献求助10
13秒前
orixero应助平平无奇采纳,获得10
13秒前
13秒前
乐正念云完成签到,获得积分10
14秒前
丘比特应助欢呼雁采纳,获得10
15秒前
15秒前
丘比特应助快乐的星月采纳,获得10
16秒前
Orange应助快乐的星月采纳,获得10
16秒前
陈qy发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297339
求助须知:如何正确求助?哪些是违规求助? 2932768
关于积分的说明 8459060
捐赠科研通 2605549
什么是DOI,文献DOI怎么找? 1422392
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644677