LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

机器人 里程计 人工智能 同时定位和映射 计算机科学 计算机视觉 基本事实 背景(考古学) 可扩展性 搜救 城市搜救 激光雷达 稳健性(进化) 地形 实时计算 移动机器人 遥感 数据库 地理 地图学 基因 考古 化学 生物化学
作者
Yun Chang,Kamak Ebadi,Christopher E. Denniston,Muhammad Fadhil Ginting,Antoni Rosinol,Andrzej Reinke,Matteo Palieri,Jingnan Shi,Amita Chatterjee,Benjamin Morrell,Ali–akbar Agha–mohammadi,Luca Carlone
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 9175-9182 被引量:18
标识
DOI:10.1109/lra.2022.3191204
摘要

Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this letter reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jinling完成签到,获得积分10
1秒前
Album完成签到,获得积分10
1秒前
2秒前
元谷雪发布了新的文献求助10
3秒前
传奇3应助zhangyue7777采纳,获得10
4秒前
5秒前
火龙果发布了新的文献求助10
5秒前
fei菲飞完成签到,获得积分10
7秒前
8秒前
8秒前
how应助everglow采纳,获得10
11秒前
ZihuiCCCC完成签到,获得积分10
11秒前
来自3602完成签到,获得积分10
12秒前
13秒前
小林完成签到,获得积分10
14秒前
小二郎应助雨中尘埃采纳,获得10
15秒前
平淡树叶完成签到,获得积分20
17秒前
how应助唐泽雪穗采纳,获得40
19秒前
美好灵寒发布了新的文献求助10
19秒前
英俊的铭应助new采纳,获得10
19秒前
漫漫完成签到 ,获得积分10
19秒前
所所应助dsajkdlas采纳,获得10
19秒前
llllllll完成签到,获得积分10
21秒前
23秒前
玛卡巴卡完成签到,获得积分10
23秒前
23秒前
好好学习完成签到,获得积分10
24秒前
JokerSun关注了科研通微信公众号
24秒前
Ry发布了新的文献求助10
25秒前
科研通AI6应助细腻的易真采纳,获得10
26秒前
ilc发布了新的文献求助10
27秒前
27秒前
莫愁一舞完成签到,获得积分10
27秒前
复杂的薯片完成签到,获得积分10
28秒前
科研通AI5应助Carly采纳,获得30
28秒前
zll发布了新的文献求助10
29秒前
Jasper应助shabbow采纳,获得50
30秒前
小二郎应助77采纳,获得10
32秒前
三三完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080