亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

机器人 里程计 人工智能 同时定位和映射 计算机科学 计算机视觉 基本事实 背景(考古学) 可扩展性 搜救 城市搜救 激光雷达 稳健性(进化) 地形 实时计算 移动机器人 遥感 数据库 地理 地图学 基因 考古 化学 生物化学
作者
Yun Chang,Kamak Ebadi,Christopher E. Denniston,Muhammad Fadhil Ginting,Antoni Rosinol,Andrzej Reinke,Matteo Palieri,Jingnan Shi,Amita Chatterjee,Benjamin Morrell,Ali–akbar Agha–mohammadi,Luca Carlone
出处
期刊:IEEE robotics and automation letters 卷期号:7 (4): 9175-9182 被引量:18
标识
DOI:10.1109/lra.2022.3191204
摘要

Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this letter reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈旧完成签到,获得积分10
3秒前
黄志伟完成签到,获得积分20
4秒前
欣欣子完成签到,获得积分10
7秒前
sunstar完成签到,获得积分10
10秒前
积极慕晴发布了新的文献求助10
13秒前
13秒前
yxl完成签到,获得积分10
14秒前
Emma发布了新的文献求助10
14秒前
可耐的盈完成签到,获得积分10
17秒前
18秒前
绿毛水怪完成签到,获得积分10
21秒前
guo完成签到 ,获得积分10
23秒前
24秒前
lsc完成签到,获得积分10
25秒前
26秒前
小fei完成签到,获得积分10
32秒前
JamesPei应助如意的沛萍采纳,获得10
38秒前
麻辣薯条完成签到,获得积分10
42秒前
Emma关注了科研通微信公众号
46秒前
时尚身影完成签到,获得积分10
47秒前
48秒前
leoduo完成签到,获得积分0
51秒前
SSY发布了新的文献求助10
53秒前
流苏2完成签到,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
toutou应助科研通管家采纳,获得10
1分钟前
toutou应助科研通管家采纳,获得10
1分钟前
帝国之花应助科研通管家采纳,获得10
1分钟前
栗子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
mjjmm发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
aidengu完成签到 ,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
aidengu发布了新的文献求助30
1分钟前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312