An action recognition method for manual acupuncture techniques using a tactile array finger cot

针灸科 人工智能 分类器(UML) 计算机科学 模式识别(心理学) 特征提取 医学 病理 替代医学
作者
Chong Su,Chen Wang,Shengyi Gou,Jie Chen,Wenchao Tang,Cun‐Zhi Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105827-105827 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.105827
摘要

The current measurement systems for the physical parameters (rotation frequency, and amplitude) of Traditional Chinese Medicine (TCM) manual acupuncture tend to cause disturbance and inconvenience in clinical application and do not accurately capture the tactile signals from the physician's finger during manual acupuncture operations. In addition, the literature rarely discusses classification of the four basic manual acupuncture techniques (reinforcing by twirling and rotating (RFTR), reducing by twirling and rotating (RDTR), reinforcing by lifting and thrusting (RFLT), and reducing by lifting and thrusting (RDLT)). To address this problem, we developed a multi-PVDF film-based tactile array finger cot to collect piezoelectric signals from the acupuncturist's finger-needle contact during manual acupuncture operations. In order to recognize the four typical TCM manual acupuncture techniques, we developed a method to capture piezoelectric signals in related "windows" and subsequently extract features to model acupuncture techniques. Next, we created an ensemble learning-based action classifier for manual acupuncture technique recognition. Finally, the proposed classifier was employed to recognize the four types of manual acupuncture techniques performed by 15 TCM physicians based on the piezoelectric signals collected using the tactile array finger cot. Among all the approaches, our proposed feature-based CatBoost ensemble learning model achieved the highest validation accuracy of 99.63% and the highest test accuracy of 92.45%. Moreover, we provide the efficiency and limitations of using this action recognition method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饶啟豪发布了新的文献求助10
2秒前
竹焚完成签到 ,获得积分10
2秒前
3秒前
4秒前
unicorn完成签到,获得积分10
4秒前
5秒前
777发布了新的文献求助10
8秒前
饶啟豪完成签到,获得积分10
9秒前
虚幻易巧完成签到 ,获得积分10
10秒前
ltx发布了新的文献求助10
10秒前
13秒前
代纤绮完成签到,获得积分10
13秒前
14秒前
李健应助LIU0809采纳,获得10
15秒前
1111发布了新的文献求助10
16秒前
16秒前
17秒前
ymu发布了新的文献求助10
18秒前
孙伟伟完成签到,获得积分10
18秒前
汉堡包应助布坎南采纳,获得10
18秒前
YonghangHe完成签到,获得积分10
18秒前
18秒前
九叶发布了新的文献求助10
19秒前
19秒前
聪慧海蓝完成签到 ,获得积分10
19秒前
共享精神应助lixiang采纳,获得10
20秒前
20秒前
孙伟伟发布了新的文献求助10
21秒前
科研通AI2S应助否认冶游史采纳,获得10
21秒前
领导范儿应助林林采纳,获得10
21秒前
bingle0123发布了新的文献求助10
21秒前
FashionBoy应助悄悄采纳,获得10
22秒前
世上无难事完成签到,获得积分10
22秒前
浅香千雪发布了新的文献求助30
24秒前
彭于晏应助揽星色采纳,获得10
24秒前
25秒前
25秒前
万能图书馆应助fhw采纳,获得10
26秒前
斯文败类应助efil采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412622
求助须知:如何正确求助?哪些是违规求助? 3015253
关于积分的说明 8869486
捐赠科研通 2703007
什么是DOI,文献DOI怎么找? 1481978
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679761