A XGBoost-Based Lane Change Prediction on Time Series Data Using Feature Engineering for Autopilot Vehicles

特征(语言学) 自动驾驶仪 钥匙(锁) 计算机科学 人工智能 排名(信息检索) 特征工程 数据挖掘 机器学习 时间序列 弹道 公制(单位) 特征选择 智能交通系统 特征提取 工程类 深度学习 运输工程 控制工程 计算机安全 天文 物理 语言学 哲学 运营管理
作者
Yi Zhang,Xiupeng Shi,Sheng Zhang,Anuj Abraham
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19187-19200 被引量:37
标识
DOI:10.1109/tits.2022.3170628
摘要

Road accidents wreck lives. Could technology stop them from happening? Driving better road safety with technology and artificial intelligence are the key elements considered by several carmakers. The key aspect of transportation in the future is to build an ecosystem comprising autonomous, connected, electric and shared mobility. The evolution of autonomous vehicles (AVs) can potentially aid transportation to people and be deployed to resolve mobility-related pain for drivers and safety on roads while changing lanes. Thus, the intelligent assistance system should be smart enough to track such vehicles while deviating into another lane. In this paper, we propose a lane change prediction framework for feature learning, with the aim to have a deep and comprehensive understanding of lane change behaviors, meanwhile, reach a high performance based on the selected features. A time-step dataset with more than 1000 features is constructed from vehicle trajectory data. To identify the key features involved in the original feature set, an XGBoost-based three-step feature learning algorithm is proposed, which integrates the feature importance ranking, metric selection and recursive feature elimination. After analyzing the accuracy of test data from different time segment positions, the sliding window method is applied on a time-step dataset with filtered features to properly select time segments, which are flattened into corresponding time-series dataset for model prediction. In our case studies, a publicly available dataset, Next Generation SIMulation (NGSIM), is adopted to conduct experiments of feature learning and lane change prediction, where we achieved a new state-of-art accuracy with 97.6% under the time-series data of 75 selected features and 1-second window size with predictor XGBoost after adopting proposed three-step method, which is superior to the other state-of-the-art feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛奶牛奶完成签到,获得积分10
1秒前
wanwan应助淡紫色鲸鱼采纳,获得10
1秒前
sushx完成签到,获得积分10
1秒前
科研小哥完成签到,获得积分10
2秒前
2秒前
泉水发布了新的文献求助30
2秒前
勤奋的冬萱完成签到,获得积分20
3秒前
西瓜瓜完成签到,获得积分10
3秒前
3秒前
小马甲应助陈阳采纳,获得10
4秒前
小炮弹发布了新的文献求助10
4秒前
wanwan应助xy采纳,获得10
6秒前
guoze完成签到,获得积分10
6秒前
6秒前
研友_V8RB68发布了新的文献求助30
6秒前
comeon完成签到,获得积分10
6秒前
7秒前
zz完成签到,获得积分10
8秒前
外向访卉发布了新的文献求助10
10秒前
科目三应助lu采纳,获得10
11秒前
星辰大海应助Squirrel采纳,获得10
11秒前
Dr_Zhao发布了新的文献求助10
11秒前
12秒前
甜美梦槐发布了新的文献求助30
12秒前
zhuzhu完成签到,获得积分10
13秒前
14秒前
泉水完成签到,获得积分10
16秒前
zizhuo2完成签到,获得积分10
18秒前
19秒前
Jasper应助crazy采纳,获得10
20秒前
踏实的映易完成签到,获得积分10
21秒前
酷酷白凡完成签到,获得积分10
21秒前
摩登兄弟发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
27秒前
Squirrel发布了新的文献求助10
27秒前
乐乐应助可乐采纳,获得10
29秒前
今后应助研友_V8RB68采纳,获得30
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442