A XGBoost-Based Lane Change Prediction on Time Series Data Using Feature Engineering for Autopilot Vehicles

特征(语言学) 自动驾驶仪 钥匙(锁) 计算机科学 人工智能 排名(信息检索) 特征工程 数据挖掘 机器学习 时间序列 弹道 公制(单位) 特征选择 智能交通系统 特征提取 工程类 深度学习 运输工程 控制工程 计算机安全 哲学 语言学 物理 运营管理 天文
作者
Yi Zhang,Xiupeng Shi,Sheng Zhang,Anuj Abraham
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19187-19200 被引量:37
标识
DOI:10.1109/tits.2022.3170628
摘要

Road accidents wreck lives. Could technology stop them from happening? Driving better road safety with technology and artificial intelligence are the key elements considered by several carmakers. The key aspect of transportation in the future is to build an ecosystem comprising autonomous, connected, electric and shared mobility. The evolution of autonomous vehicles (AVs) can potentially aid transportation to people and be deployed to resolve mobility-related pain for drivers and safety on roads while changing lanes. Thus, the intelligent assistance system should be smart enough to track such vehicles while deviating into another lane. In this paper, we propose a lane change prediction framework for feature learning, with the aim to have a deep and comprehensive understanding of lane change behaviors, meanwhile, reach a high performance based on the selected features. A time-step dataset with more than 1000 features is constructed from vehicle trajectory data. To identify the key features involved in the original feature set, an XGBoost-based three-step feature learning algorithm is proposed, which integrates the feature importance ranking, metric selection and recursive feature elimination. After analyzing the accuracy of test data from different time segment positions, the sliding window method is applied on a time-step dataset with filtered features to properly select time segments, which are flattened into corresponding time-series dataset for model prediction. In our case studies, a publicly available dataset, Next Generation SIMulation (NGSIM), is adopted to conduct experiments of feature learning and lane change prediction, where we achieved a new state-of-art accuracy with 97.6% under the time-series data of 75 selected features and 1-second window size with predictor XGBoost after adopting proposed three-step method, which is superior to the other state-of-the-art feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
人人夸我美食家完成签到,获得积分10
1秒前
2秒前
露露完成签到,获得积分20
2秒前
3秒前
3秒前
lbbb完成签到,获得积分10
3秒前
李纪磊发布了新的文献求助10
4秒前
5秒前
6秒前
一个小目标完成签到,获得积分10
6秒前
7秒前
初晨完成签到,获得积分10
8秒前
WAYNE完成签到,获得积分10
8秒前
8秒前
caspianhuang完成签到,获得积分0
9秒前
9秒前
wanci应助踏雪寻梅采纳,获得10
9秒前
彩色路人发布了新的文献求助10
10秒前
10秒前
大意的羊发布了新的文献求助10
12秒前
张琼敏发布了新的文献求助10
12秒前
mogen发布了新的文献求助10
12秒前
dongkk完成签到,获得积分10
13秒前
bdvdsrwteges发布了新的文献求助10
13秒前
科研发布了新的文献求助10
14秒前
跳跃的黑猫完成签到,获得积分10
14秒前
Eternity完成签到,获得积分10
15秒前
15秒前
包子完成签到,获得积分10
15秒前
16秒前
Orange应助从容的文涛采纳,获得10
16秒前
16秒前
LH发布了新的文献求助10
17秒前
Lucas应助点看世界采纳,获得10
17秒前
18秒前
彩色路人完成签到,获得积分10
18秒前
Erica完成签到,获得积分10
20秒前
caocao发布了新的文献求助10
20秒前
小兰应助露露采纳,获得30
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154023
求助须知:如何正确求助?哪些是违规求助? 2804958
关于积分的说明 7862656
捐赠科研通 2463084
什么是DOI,文献DOI怎么找? 1311125
科研通“疑难数据库(出版商)”最低求助积分说明 629453
版权声明 601821