A XGBoost-Based Lane Change Prediction on Time Series Data Using Feature Engineering for Autopilot Vehicles

特征(语言学) 自动驾驶仪 钥匙(锁) 计算机科学 人工智能 排名(信息检索) 特征工程 数据挖掘 机器学习 时间序列 弹道 公制(单位) 特征选择 智能交通系统 特征提取 工程类 深度学习 运输工程 控制工程 计算机安全 天文 物理 语言学 哲学 运营管理
作者
Yi Zhang,Xiupeng Shi,Sheng Zhang,Anuj Abraham
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19187-19200 被引量:37
标识
DOI:10.1109/tits.2022.3170628
摘要

Road accidents wreck lives. Could technology stop them from happening? Driving better road safety with technology and artificial intelligence are the key elements considered by several carmakers. The key aspect of transportation in the future is to build an ecosystem comprising autonomous, connected, electric and shared mobility. The evolution of autonomous vehicles (AVs) can potentially aid transportation to people and be deployed to resolve mobility-related pain for drivers and safety on roads while changing lanes. Thus, the intelligent assistance system should be smart enough to track such vehicles while deviating into another lane. In this paper, we propose a lane change prediction framework for feature learning, with the aim to have a deep and comprehensive understanding of lane change behaviors, meanwhile, reach a high performance based on the selected features. A time-step dataset with more than 1000 features is constructed from vehicle trajectory data. To identify the key features involved in the original feature set, an XGBoost-based three-step feature learning algorithm is proposed, which integrates the feature importance ranking, metric selection and recursive feature elimination. After analyzing the accuracy of test data from different time segment positions, the sliding window method is applied on a time-step dataset with filtered features to properly select time segments, which are flattened into corresponding time-series dataset for model prediction. In our case studies, a publicly available dataset, Next Generation SIMulation (NGSIM), is adopted to conduct experiments of feature learning and lane change prediction, where we achieved a new state-of-art accuracy with 97.6% under the time-series data of 75 selected features and 1-second window size with predictor XGBoost after adopting proposed three-step method, which is superior to the other state-of-the-art feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI6应助MIPAMING采纳,获得30
1秒前
stife32完成签到,获得积分10
1秒前
拾寒完成签到,获得积分10
1秒前
哥屋恩完成签到,获得积分10
2秒前
周老八发布了新的文献求助10
2秒前
爱壹帆发布了新的文献求助10
2秒前
June-ho发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
Jasper完成签到,获得积分10
3秒前
小高要努力完成签到,获得积分20
4秒前
4秒前
狂野含巧发布了新的文献求助10
4秒前
木子小样完成签到,获得积分10
4秒前
Agatsuma发布了新的文献求助10
4秒前
空城发布了新的文献求助10
4秒前
万有引力完成签到 ,获得积分20
5秒前
hexiao完成签到,获得积分10
5秒前
shinen完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
sdfwsdfsd发布了新的文献求助30
6秒前
6秒前
完美谷秋完成签到 ,获得积分10
6秒前
郑成灿完成签到 ,获得积分10
7秒前
行走De太阳花完成签到,获得积分10
7秒前
7秒前
8秒前
李健应助郑玉成采纳,获得10
8秒前
时尚的冰棍完成签到 ,获得积分10
8秒前
mm发布了新的文献求助200
8秒前
小马完成签到,获得积分10
8秒前
高挑的保温杯完成签到,获得积分20
9秒前
狒momo完成签到,获得积分10
9秒前
阳枝甘禄完成签到,获得积分10
9秒前
中微子发布了新的文献求助10
10秒前
wangbq完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890960
求助须知:如何正确求助?哪些是违规求助? 4174608
关于积分的说明 12956124
捐赠科研通 3936644
什么是DOI,文献DOI怎么找? 2159757
邀请新用户注册赠送积分活动 1178149
关于科研通互助平台的介绍 1083632