Data Driven Approach for Optimal Power Flow in Distribution Network

解算器 计算机科学 数学优化 共轭梯度法 算法 缩小 数学 程序设计语言
作者
Dinesh Kumar Mahto,Vikash Kumar Saini,Abhishek Mathur,Rajesh Kumar,Akash Saxena
标识
DOI:10.1109/iscon52037.2021.9702343
摘要

Optimal power flow (OPF) provides solutions to power flow problem like network loss minimization and voltage profile improvement in the distribution network. This task is achieved by the optimal setting of control variables subjected to operational constraint. Traditionally, OPF solutions are calculated by model-driven approaches which are based on mathematical assumption. The accuracy of these model based depends on the theoretical concept like convexity, differentiability and continuity. Accuracy of the model is subjected to system constraint which makes it less robust to implement. In recent time, massive deployment of sensor based measuring devices into the network which acquires large amount of data for analysis. It facilitates data driven approaches over model-based approaches. This paper studies Data- driven ANN model for mapping of input parameters (PD, QD) and output parameters(V,) to emulate actual system. Additionally, three weight training algorithms namely (a) Levenberg-Marquardt (LM), (b) Bayesian Regularization (BR), and (c) Scaled Conjugate Gradient (SCG)are compared with MATPOWER embedded solver (MIPS) on the standard IEEE-33 bus distribution network. The LM, BR, and SCG based ANN models have the computational time of 0.009511,0.009129, and 0.011519 seconds respectively. It shows that the proposed BR- based models outperform rest of models, and also it is 254 time faster than the traditional MIPS solver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的翠芙完成签到,获得积分10
刚刚
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
wjj发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
彭于晏应助鱼与树采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
xiuxiu_27发布了新的文献求助10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
剑兰先生应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
Gaoge发布了新的文献求助10
4秒前
kimoto完成签到 ,获得积分10
5秒前
Tsuki完成签到,获得积分10
5秒前
5秒前
孙瞳完成签到,获得积分10
5秒前
小池同学完成签到,获得积分10
6秒前
JamesPei应助大白采纳,获得10
6秒前
mi发布了新的文献求助10
7秒前
小夭完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678