Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest

气候学 降水 环境科学 长江 海面温度 极端天气 大气科学 中国 气象学 地理 气候变化 海洋学 地质学 考古
作者
Wenguang Wei,Zhongwei Yan,Xuan Tong,Zuoqiang Han,Miaomiao Ma,Shuang Yu,Jiangjiang Xia
出处
期刊:Weather and climate extremes [Elsevier BV]
卷期号:37: 100477-100477 被引量:11
标识
DOI:10.1016/j.wace.2022.100477
摘要

The 2020 summer extreme precipitation event over the Mid-Lower Reaches of Yangtze River in China caused widespread socioeconomic impacts, with a death toll of hundreds and direct economic loss of half billion CNY. Seasonal prediction of summer extreme precipitation event over this region, however, has long been a challenge, due to the underlying interactions among various atmospheric and oceanic factors. Based on the random forest (RF), a classical machine learning method, a series of predictive models are trained and tested on the samples during 1951–2019, with 14 preceding atmospheric and oceanic indices as potential predictors. It is found that the model based on 3 indices has optimal performance in terms of the distinguishing capacity between extreme and non-extreme events. For the 2020 summer extreme event, the model predicts a large probability far beyond the climatological mean level, indicating a very likely extreme event. Interpretation of the decision trees in the RF model reveals 3 main decision paths leading to an extreme precipitation event over this region. The first one is driven by a strong eastern tropical Pacific (EP) El Niño which starts to decay in spring but does not totally disappear in summer. The second one results from the combined effect of an EP La Niña and normal sea surface temperature over the North Indian Ocean (NIO). The last one is also associated with a decaying EP El Niño, but the EP El Niño here is much weaker than that in the first path. Both the Pacific-El Niño-independent warming of NIO and cooling in the eastern tropical western Pacific in spring play important roles. The RF integrates different nonlinear physical mechanisms in a model and discovers weak signals which are easily omitted by traditional linear methods. The trained model can self-improve with increasing samples and serve as a reference for operational prediction of extreme precipitation events in the region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助布鲁鲁采纳,获得10
1秒前
4秒前
杰杰大叔发布了新的文献求助10
4秒前
田様应助Zy采纳,获得10
5秒前
春风吹叁旬完成签到,获得积分20
7秒前
8秒前
9秒前
10秒前
orixero应助平淡的冰巧采纳,获得10
11秒前
12秒前
李密完成签到 ,获得积分10
13秒前
白日做梦完成签到 ,获得积分10
13秒前
mm_zxh完成签到,获得积分10
13秒前
阿航完成签到,获得积分10
14秒前
小许发布了新的文献求助10
14秒前
一勺晚安z发布了新的文献求助10
15秒前
oxygen253完成签到,获得积分10
17秒前
19秒前
橙子爱吃火龙果完成签到 ,获得积分10
19秒前
西西完成签到 ,获得积分10
22秒前
mz11完成签到,获得积分10
22秒前
23秒前
23秒前
Tycoon发布了新的文献求助10
25秒前
李天王完成签到,获得积分10
25秒前
tanrui发布了新的文献求助10
26秒前
26秒前
大西瓜发布了新的文献求助10
27秒前
领导范儿应助现代雪柳采纳,获得10
29秒前
Akim应助Tycoon采纳,获得10
31秒前
Iceshadows发布了新的文献求助10
31秒前
sci大佬完成签到,获得积分10
32秒前
33秒前
闲鱼电脑完成签到,获得积分10
35秒前
35秒前
37秒前
37秒前
41秒前
osteoclast发布了新的文献求助10
42秒前
现代雪柳发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160