Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest

气候学 降水 环境科学 长江 海面温度 极端天气 大气科学 中国 气象学 地理 气候变化 海洋学 地质学 考古
作者
Wenguang Wei,Zhongwei Yan,Xuan Tong,Zuoqiang Han,Miaomiao Ma,Shuang Yu,Jiangjiang Xia
出处
期刊:Weather and climate extremes [Elsevier]
卷期号:37: 100477-100477 被引量:11
标识
DOI:10.1016/j.wace.2022.100477
摘要

The 2020 summer extreme precipitation event over the Mid-Lower Reaches of Yangtze River in China caused widespread socioeconomic impacts, with a death toll of hundreds and direct economic loss of half billion CNY. Seasonal prediction of summer extreme precipitation event over this region, however, has long been a challenge, due to the underlying interactions among various atmospheric and oceanic factors. Based on the random forest (RF), a classical machine learning method, a series of predictive models are trained and tested on the samples during 1951–2019, with 14 preceding atmospheric and oceanic indices as potential predictors. It is found that the model based on 3 indices has optimal performance in terms of the distinguishing capacity between extreme and non-extreme events. For the 2020 summer extreme event, the model predicts a large probability far beyond the climatological mean level, indicating a very likely extreme event. Interpretation of the decision trees in the RF model reveals 3 main decision paths leading to an extreme precipitation event over this region. The first one is driven by a strong eastern tropical Pacific (EP) El Niño which starts to decay in spring but does not totally disappear in summer. The second one results from the combined effect of an EP La Niña and normal sea surface temperature over the North Indian Ocean (NIO). The last one is also associated with a decaying EP El Niño, but the EP El Niño here is much weaker than that in the first path. Both the Pacific-El Niño-independent warming of NIO and cooling in the eastern tropical western Pacific in spring play important roles. The RF integrates different nonlinear physical mechanisms in a model and discovers weak signals which are easily omitted by traditional linear methods. The trained model can self-improve with increasing samples and serve as a reference for operational prediction of extreme precipitation events in the region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
八一驳回了烟花应助
刚刚
Evander发布了新的文献求助10
刚刚
Criminology34应助尊敬帅哥采纳,获得10
刚刚
一树梨花白完成签到,获得积分20
1秒前
1秒前
墨旱莲完成签到,获得积分10
1秒前
BareBear应助zzrg采纳,获得10
1秒前
tangshijun发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
冷艳的灭龙完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得20
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Wolfgang发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助四夕水窖采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ziptip完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
happyccch发布了新的文献求助10
2秒前
哈比人linling完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
孤独的无血完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553