Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest

气候学 降水 环境科学 长江 海面温度 极端天气 大气科学 中国 气象学 地理 气候变化 海洋学 地质学 考古
作者
Wenguang Wei,Zhongwei Yan,Xuan Tong,Zuoqiang Han,Miaomiao Ma,Shuang Yu,Jiangjiang Xia
出处
期刊:Weather and climate extremes [Elsevier]
卷期号:37: 100477-100477 被引量:11
标识
DOI:10.1016/j.wace.2022.100477
摘要

The 2020 summer extreme precipitation event over the Mid-Lower Reaches of Yangtze River in China caused widespread socioeconomic impacts, with a death toll of hundreds and direct economic loss of half billion CNY. Seasonal prediction of summer extreme precipitation event over this region, however, has long been a challenge, due to the underlying interactions among various atmospheric and oceanic factors. Based on the random forest (RF), a classical machine learning method, a series of predictive models are trained and tested on the samples during 1951–2019, with 14 preceding atmospheric and oceanic indices as potential predictors. It is found that the model based on 3 indices has optimal performance in terms of the distinguishing capacity between extreme and non-extreme events. For the 2020 summer extreme event, the model predicts a large probability far beyond the climatological mean level, indicating a very likely extreme event. Interpretation of the decision trees in the RF model reveals 3 main decision paths leading to an extreme precipitation event over this region. The first one is driven by a strong eastern tropical Pacific (EP) El Niño which starts to decay in spring but does not totally disappear in summer. The second one results from the combined effect of an EP La Niña and normal sea surface temperature over the North Indian Ocean (NIO). The last one is also associated with a decaying EP El Niño, but the EP El Niño here is much weaker than that in the first path. Both the Pacific-El Niño-independent warming of NIO and cooling in the eastern tropical western Pacific in spring play important roles. The RF integrates different nonlinear physical mechanisms in a model and discovers weak signals which are easily omitted by traditional linear methods. The trained model can self-improve with increasing samples and serve as a reference for operational prediction of extreme precipitation events in the region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AptRank发布了新的文献求助10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Murray应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
陈泽宇发布了新的文献求助10
2秒前
JamesPei应助爱吃坤蛋的喵采纳,获得10
3秒前
爆米花应助严笑容采纳,获得30
3秒前
小马甲应助陌君子筱采纳,获得10
4秒前
6秒前
AptRank完成签到,获得积分10
7秒前
Crystal完成签到,获得积分10
8秒前
乐乐应助榆岸采纳,获得10
9秒前
啊怪完成签到 ,获得积分10
13秒前
LKIU发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助安静的芝麻采纳,获得10
15秒前
16秒前
18秒前
20秒前
橘子海完成签到,获得积分10
21秒前
21秒前
陈星锦发布了新的文献求助10
21秒前
23秒前
橘子海发布了新的文献求助10
23秒前
24秒前
25秒前
冯万里完成签到 ,获得积分10
25秒前
懒洋洋发布了新的文献求助10
26秒前
26秒前
微笑的鱼发布了新的文献求助10
27秒前
28秒前
贤惠的松发布了新的文献求助10
28秒前
科研通AI2S应助zjj采纳,获得10
29秒前
29秒前
31秒前
应文俊发布了新的文献求助10
33秒前
zyh关闭了zyh文献求助
33秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954