Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest

气候学 降水 环境科学 长江 海面温度 极端天气 大气科学 中国 气象学 地理 气候变化 海洋学 地质学 考古
作者
Wenguang Wei,Zhongwei Yan,Xuan Tong,Zuoqiang Han,Miaomiao Ma,Shuang Yu,Jiangjiang Xia
出处
期刊:Weather and climate extremes [Elsevier]
卷期号:37: 100477-100477 被引量:11
标识
DOI:10.1016/j.wace.2022.100477
摘要

The 2020 summer extreme precipitation event over the Mid-Lower Reaches of Yangtze River in China caused widespread socioeconomic impacts, with a death toll of hundreds and direct economic loss of half billion CNY. Seasonal prediction of summer extreme precipitation event over this region, however, has long been a challenge, due to the underlying interactions among various atmospheric and oceanic factors. Based on the random forest (RF), a classical machine learning method, a series of predictive models are trained and tested on the samples during 1951–2019, with 14 preceding atmospheric and oceanic indices as potential predictors. It is found that the model based on 3 indices has optimal performance in terms of the distinguishing capacity between extreme and non-extreme events. For the 2020 summer extreme event, the model predicts a large probability far beyond the climatological mean level, indicating a very likely extreme event. Interpretation of the decision trees in the RF model reveals 3 main decision paths leading to an extreme precipitation event over this region. The first one is driven by a strong eastern tropical Pacific (EP) El Niño which starts to decay in spring but does not totally disappear in summer. The second one results from the combined effect of an EP La Niña and normal sea surface temperature over the North Indian Ocean (NIO). The last one is also associated with a decaying EP El Niño, but the EP El Niño here is much weaker than that in the first path. Both the Pacific-El Niño-independent warming of NIO and cooling in the eastern tropical western Pacific in spring play important roles. The RF integrates different nonlinear physical mechanisms in a model and discovers weak signals which are easily omitted by traditional linear methods. The trained model can self-improve with increasing samples and serve as a reference for operational prediction of extreme precipitation events in the region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yhh发布了新的文献求助10
1秒前
JamesPei应助典雅的俊驰采纳,获得10
2秒前
5秒前
游一发布了新的文献求助10
5秒前
1056720198发布了新的文献求助10
5秒前
未du发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
小豹子完成签到,获得积分10
6秒前
酷波er应助bailubailing采纳,获得20
7秒前
7秒前
你好完成签到,获得积分10
7秒前
大个应助阿静采纳,获得10
8秒前
8秒前
9秒前
10秒前
10秒前
机灵水卉发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
美亲发布了新的文献求助10
12秒前
12秒前
12秒前
大胆的飞荷完成签到,获得积分10
12秒前
15秒前
15秒前
健忘的曼青完成签到,获得积分20
15秒前
林摆摆完成签到,获得积分10
15秒前
CodeCraft应助zg采纳,获得10
16秒前
16秒前
wait发布了新的文献求助10
16秒前
深林狼发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
17秒前
创不可贴发布了新的文献求助10
17秒前
丛士乔完成签到 ,获得积分10
17秒前
littleknees发布了新的文献求助10
17秒前
独特芝麻发布了新的文献求助10
19秒前
苗条的元风完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243