Detection of marine floating plastic using Sentinel-2 imagery and machine learning models

支持向量机 环境科学 随机森林 碎片 遥感 归一化差异植被指数 海洋废弃物 核(代数) 计算机科学 人工智能 数学 气象学 地质学 地理 海洋学 组合数学 气候变化
作者
Srikanta Sannigrahi,Bidroha Basu,Arunima Sarkar Basu,Francesco Pilla
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2106.03694
摘要

The increasing level of marine plastic pollution poses severe threats to the marine ecosystem and biodiversity. The present study attempted to explore the full functionality of open Sentinel satellite data and ML models for detecting and classifying floating plastic debris in Mytilene (Greece), Limassol (Cyprus), Calabria (Italy), and Beirut (Lebanon). Two ML models, i.e. Support Vector Machine (SVM) and Random Forest (RF) were utilized to carry out the classification analysis. In-situ plastic location data was collected from the control experiment conducted in Mytilene, Greece and Limassol, Cyprus, and the same was considered for training the models. Both remote sensing bands and spectral indices were used for developing the ML models. A spectral signature profile for plastic was created for discriminating the floating plastic from other marine debris. A newly developed index, kernel Normalized Difference Vegetation Index (kNDVI), was incorporated into the modelling to examine its contribution to model performances. Both SVM and RF were performed well in five models and test case combinations. Among the two ML models, the highest performance was measured for the RF. The inclusion of kNDVI was found effective and increased the model performances, reflected by high balanced accuracy measured for model 2 (~80% to ~98 % for SVM and ~87% to ~97 % for RF). Using the best-performed model, an automated floating plastic detection system was developed and tested in Calabria and Beirut. For both sites, the trained model had detected the floating plastic with ~99% accuracy. Among the six predictors, the FDI was found the most important variable for detecting marine floating plastic. These findings collectively suggest that high-resolution remote sensing imagery and the automated ML models can be an effective alternative for the cost-effective detection of marine floating plastic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
epmoct完成签到 ,获得积分10
1秒前
1秒前
CC完成签到,获得积分10
2秒前
汉堡包应助yy采纳,获得10
2秒前
烟花应助爱打篮球的坤坤采纳,获得10
3秒前
廖骏发布了新的文献求助10
4秒前
4秒前
若雪成依完成签到 ,获得积分10
4秒前
shime完成签到,获得积分10
5秒前
李争完成签到,获得积分10
6秒前
zhang完成签到,获得积分20
6秒前
baby的跑男完成签到,获得积分10
6秒前
6秒前
7秒前
大胆的弼完成签到,获得积分10
7秒前
mk发布了新的文献求助10
7秒前
hqq2312完成签到,获得积分10
8秒前
zzq发布了新的文献求助10
8秒前
阿冰发布了新的文献求助10
11秒前
无心的冰之完成签到,获得积分10
11秒前
11秒前
SMANHAN发布了新的文献求助10
13秒前
XSB完成签到,获得积分10
13秒前
777发布了新的文献求助10
13秒前
ryiii发布了新的文献求助30
14秒前
Shaw完成签到,获得积分10
15秒前
XXX完成签到,获得积分10
15秒前
无限雨南完成签到,获得积分10
16秒前
陈陈完成签到 ,获得积分10
16秒前
阿和完成签到,获得积分10
16秒前
yy完成签到,获得积分10
17秒前
17秒前
18秒前
fxy应助平常土豆采纳,获得10
19秒前
23秒前
高兴荔枝发布了新的文献求助10
24秒前
慕青应助合适的语雪采纳,获得10
24秒前
俊逸尔风完成签到 ,获得积分10
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162790
求助须知:如何正确求助?哪些是违规求助? 2813724
关于积分的说明 7901861
捐赠科研通 2473365
什么是DOI,文献DOI怎么找? 1316788
科研通“疑难数据库(出版商)”最低求助积分说明 631520
版权声明 602175