Detection of marine floating plastic using Sentinel-2 imagery and machine learning models

支持向量机 环境科学 随机森林 碎片 遥感 归一化差异植被指数 海洋废弃物 核(代数) 计算机科学 人工智能 数学 气象学 地质学 地理 海洋学 组合数学 气候变化
作者
Srikanta Sannigrahi,Bidroha Basu,Arunima Sarkar Basu,Francesco Pilla
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2106.03694
摘要

The increasing level of marine plastic pollution poses severe threats to the marine ecosystem and biodiversity. The present study attempted to explore the full functionality of open Sentinel satellite data and ML models for detecting and classifying floating plastic debris in Mytilene (Greece), Limassol (Cyprus), Calabria (Italy), and Beirut (Lebanon). Two ML models, i.e. Support Vector Machine (SVM) and Random Forest (RF) were utilized to carry out the classification analysis. In-situ plastic location data was collected from the control experiment conducted in Mytilene, Greece and Limassol, Cyprus, and the same was considered for training the models. Both remote sensing bands and spectral indices were used for developing the ML models. A spectral signature profile for plastic was created for discriminating the floating plastic from other marine debris. A newly developed index, kernel Normalized Difference Vegetation Index (kNDVI), was incorporated into the modelling to examine its contribution to model performances. Both SVM and RF were performed well in five models and test case combinations. Among the two ML models, the highest performance was measured for the RF. The inclusion of kNDVI was found effective and increased the model performances, reflected by high balanced accuracy measured for model 2 (~80% to ~98 % for SVM and ~87% to ~97 % for RF). Using the best-performed model, an automated floating plastic detection system was developed and tested in Calabria and Beirut. For both sites, the trained model had detected the floating plastic with ~99% accuracy. Among the six predictors, the FDI was found the most important variable for detecting marine floating plastic. These findings collectively suggest that high-resolution remote sensing imagery and the automated ML models can be an effective alternative for the cost-effective detection of marine floating plastic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
<小天才>发布了新的文献求助10
1秒前
真君山山长完成签到,获得积分10
1秒前
1秒前
伯赏人杰发布了新的文献求助10
2秒前
我想吃薯条完成签到 ,获得积分10
3秒前
MchemG应助迎风采纳,获得10
3秒前
存在发布了新的文献求助10
3秒前
SYLH应助hanye采纳,获得10
3秒前
3秒前
5秒前
斯文败类应助WJ采纳,获得10
6秒前
6秒前
涵泽发布了新的文献求助10
6秒前
偷喝汽水完成签到,获得积分10
7秒前
查斯娜完成签到,获得积分10
8秒前
汉堡包应助Steve采纳,获得10
8秒前
8秒前
千跃举报搞怪的人龙求助涉嫌违规
9秒前
9秒前
10秒前
小羊小羊发布了新的文献求助10
10秒前
11秒前
内向映天完成签到 ,获得积分10
11秒前
存在完成签到,获得积分10
11秒前
蒹葭苍苍完成签到,获得积分10
12秒前
13秒前
峰1992发布了新的文献求助10
14秒前
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Dobrzs应助科研通管家采纳,获得10
15秒前
Lucas应助哈哈采纳,获得10
16秒前
16秒前
NexusExplorer应助司空豁采纳,获得10
17秒前
星辰大海应助SH采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000