Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network

期限(时间) 计算机科学 图形 理论计算机科学 物理 量子力学
作者
Yaguan Wang,Yong Qin,Jianyuan Guo,Zhiwei Cao,Limin Jia
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:604: 127959-127959 被引量:16
标识
DOI:10.1016/j.physa.2022.127959
摘要

Prediction of passenger flow distribution in urban rail transit stations can provide important data support for passenger flow organization and passenger travel guidance. However, complex station space structure and simulation-based passenger flow data bring challenges to accurate analysis and prediction of the passenger flow inside the station. This paper proposes a temporal graph attention convolutional neural network model (TGACN) to predict the passenger flow volume and density in key areas of the station. Firstly, considering the topological structure of key areas and the characteristics of passenger flow and flow trend in the station, a multi-graph generation method for continuous space in stations is designed, including geographic neighborhood graph and semantic neighborhood graph, to represent the static and dynamic correlation between nodes. Secondly, a new method of spatio-temporal feature fusion is proposed, which takes multi-graph as input to optimize the extraction and expression of spatial and temporal correlation. Finally, the TGACN is verified by passenger flow data set, which is constructed based on real-time video monitoring data of a transit station in Guangzhou. Experiments demonstrate that the TGACN can obtain the spatio-temporal correlation from passenger flow data, and the prediction results are better than the existing baseline models. • A prediction model for multipoint passenger flow in station is proposed. • Geographical graph is constructed to measure the spatial correlation between nodes. • Semantic graph is constructed to measure the correlation of passenger flow state. • Effective spatial information screening is realized by dimensionality reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助lifesci_ming采纳,获得10
刚刚
刚刚
不在乎过发布了新的文献求助10
刚刚
1秒前
小艾发布了新的文献求助30
2秒前
拒收病婿完成签到,获得积分20
4秒前
彭于彦祖应助猪猪采纳,获得30
6秒前
7秒前
8秒前
8秒前
华仔应助西贝采纳,获得10
9秒前
liuyan1005完成签到,获得积分10
10秒前
Menand完成签到,获得积分10
10秒前
天易发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
潇公子完成签到,获得积分10
15秒前
打打应助羊洋洋采纳,获得10
16秒前
存在完成签到,获得积分10
16秒前
Airy完成签到,获得积分10
16秒前
17秒前
17秒前
小蘑菇应助yuanjingnan采纳,获得10
17秒前
乌衣白马完成签到,获得积分10
17秒前
lifesci_ming完成签到,获得积分10
18秒前
18秒前
英姑应助陈一采纳,获得10
18秒前
19秒前
内向的行云完成签到 ,获得积分10
19秒前
迷路衫发布了新的文献求助10
21秒前
Lucas应助小胳膊细腿采纳,获得10
21秒前
晴晴发布了新的文献求助10
23秒前
FashionBoy应助暴龙战士图图采纳,获得10
24秒前
24秒前
25秒前
26秒前
26秒前
28秒前
yuanjingnan发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419