Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network

期限(时间) 计算机科学 图形 理论计算机科学 物理 量子力学
作者
Yaguan Wang,Yong Qin,Jianyuan Guo,Zhiwei Cao,Limin Jia
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:604: 127959-127959 被引量:16
标识
DOI:10.1016/j.physa.2022.127959
摘要

Prediction of passenger flow distribution in urban rail transit stations can provide important data support for passenger flow organization and passenger travel guidance. However, complex station space structure and simulation-based passenger flow data bring challenges to accurate analysis and prediction of the passenger flow inside the station. This paper proposes a temporal graph attention convolutional neural network model (TGACN) to predict the passenger flow volume and density in key areas of the station. Firstly, considering the topological structure of key areas and the characteristics of passenger flow and flow trend in the station, a multi-graph generation method for continuous space in stations is designed, including geographic neighborhood graph and semantic neighborhood graph, to represent the static and dynamic correlation between nodes. Secondly, a new method of spatio-temporal feature fusion is proposed, which takes multi-graph as input to optimize the extraction and expression of spatial and temporal correlation. Finally, the TGACN is verified by passenger flow data set, which is constructed based on real-time video monitoring data of a transit station in Guangzhou. Experiments demonstrate that the TGACN can obtain the spatio-temporal correlation from passenger flow data, and the prediction results are better than the existing baseline models. • A prediction model for multipoint passenger flow in station is proposed. • Geographical graph is constructed to measure the spatial correlation between nodes. • Semantic graph is constructed to measure the correlation of passenger flow state. • Effective spatial information screening is realized by dimensionality reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
liuzhuohao应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
烟花应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
ljh关闭了ljh文献求助
刚刚
ljh关闭了ljh文献求助
刚刚
ljh关闭了ljh文献求助
刚刚
ljh关闭了ljh文献求助
刚刚
ljh关闭了ljh文献求助
刚刚
李绿真完成签到,获得积分10
刚刚
ljh关闭了ljh文献求助
刚刚
ljh关闭了ljh文献求助
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得50
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
小五发布了新的文献求助10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
海上森林的一只猫完成签到 ,获得积分10
2秒前
桐桐应助土豪的梦秋采纳,获得10
2秒前
3秒前
杨冰完成签到,获得积分10
3秒前
3秒前
彭凯发布了新的文献求助10
3秒前
Eraser完成签到,获得积分10
4秒前
Ava应助XIEQ采纳,获得10
5秒前
彭于晏应助zzz采纳,获得10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605773
求助须知:如何正确求助?哪些是违规求助? 4690365
关于积分的说明 14863216
捐赠科研通 4702671
什么是DOI,文献DOI怎么找? 2542266
邀请新用户注册赠送积分活动 1507862
关于科研通互助平台的介绍 1472159