An Exosome-based Transcriptomic Signature for Noninvasive, Early Detection of Patients With Pancreatic Ductal Adenocarcinoma: A Multicenter Cohort Study

队列 胰腺导管腺癌 医学 胰腺癌 肿瘤科 内科学 外体 转录组 阶段(地层学) 小RNA 癌症 生物信息学 癌症研究 微泡 生物 基因 基因表达 遗传学 古生物学
作者
Kota Nakamura,Zhenzhen Zhu,Roy S,Eunsung Jun,Haiyong Han,Rubén M. Muñoz,Satoshi Nishiwada,Geeta G. Sharma,Derek Cridebring,Frédéric Zenhausern,Kim S,Denise J. Roe,Sourat Darabi,In Woong Han,Douglas B. Evans,Suguru Yamada,Michael J. Demeure,Carlos Becerra,Scott Celinski,Erkut Borazanci,Susan Tsai,Yasuhiro Kodera,Joon Oh Park,John S. Bolton,Xin Wang,Song Cheol Kim,Daniel D. Von Hoff,Ajay Goel
出处
期刊:Gastroenterology [Elsevier]
卷期号:163 (5): 1252-1266.e2 被引量:44
标识
DOI:10.1053/j.gastro.2022.06.090
摘要

Background & Aims Pancreatic ductal adenocarcinoma (PDAC) incidence is rising worldwide, and most patients present with an unresectable disease at initial diagnosis. Measurement of carbohydrate antigen 19-9 (CA19-9) levels lacks adequate sensitivity and specificity for early detection; hence, there is an unmet need to develop alternate molecular diagnostic biomarkers for PDAC. Emerging evidence suggests that tumor-derived exosomal cargo, particularly micro RNAs (miRNAs), offer an attractive platform for the development of cancer-specific biomarkers. Herein, genomewide profiling in blood specimens was performed to develop an exosome-based transcriptomic signature for noninvasive and early detection of PDAC. Methods Small RNA sequencing was undertaken in a cohort of 44 patients with an early-stage PDAC and 57 nondisease controls. Using machine-learning algorithms, a panel of cell-free (cf) and exosomal (exo) miRNAs were prioritized that discriminated patients with PDAC from control subjects. Subsequently, the performance of the biomarkers was trained and validated in independent cohorts (n = 191) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Results The sequencing analysis initially identified a panel of 30 overexpressed miRNAs in PDAC. Subsequently using qRT-PCR assays, the panel was reduced to 13 markers (5 cf- and 8 exo-miRNAs), which successfully identified patients with all stages of PDAC (area under the curve [AUC] = 0.98 training cohort; AUC = 0.93 validation cohort); but more importantly, was equally robust for the identification of early-stage PDAC (stages I and II; AUC = 0.93). Furthermore, this transcriptomic signature successfully identified CA19–9 negative cases (<37 U/mL; AUC = 0.96), when analyzed in combination with CA19–9 levels, significantly improved the overall diagnostic accuracy (AUC = 0.99 vs AUC = 0.86 for CA19–9 alone). Conclusions In this study, an exosome-based liquid biopsy signature for the noninvasive and robust detection of patients with PDAC was developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄皮发布了新的文献求助10
1秒前
十一发布了新的文献求助10
1秒前
小张完成签到,获得积分10
1秒前
根决发布了新的文献求助10
1秒前
cc完成签到,获得积分10
1秒前
言言发布了新的文献求助10
1秒前
复杂焱完成签到 ,获得积分10
2秒前
2秒前
溪秋白完成签到,获得积分20
3秒前
3秒前
3秒前
小熊5号完成签到,获得积分10
4秒前
鳗鱼落雁完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
sky完成签到,获得积分10
6秒前
光亮向露完成签到,获得积分10
6秒前
小冯发布了新的文献求助10
7秒前
7秒前
7秒前
顾矜应助Re采纳,获得10
8秒前
8秒前
葡萄皮完成签到,获得积分10
8秒前
共享精神应助dongli6536采纳,获得10
8秒前
8秒前
xbq发布了新的文献求助10
9秒前
9秒前
正直之瑶完成签到,获得积分10
9秒前
高贵洋葱完成签到,获得积分10
10秒前
姜黎发布了新的文献求助10
10秒前
10秒前
善学以致用应助葭月十七采纳,获得30
12秒前
12秒前
FashionBoy应助梅倪采纳,获得10
12秒前
善学以致用应助非鱼采纳,获得10
13秒前
向阳发布了新的文献求助10
13秒前
13秒前
极品小亮发布了新的文献求助10
13秒前
之之完成签到,获得积分20
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144189
求助须知:如何正确求助?哪些是违规求助? 2795795
关于积分的说明 7816709
捐赠科研通 2451879
什么是DOI,文献DOI怎么找? 1304729
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419