MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion

计算机科学 利用 理论计算机科学 图形 嵌入 人工智能 计算机安全
作者
Guoquan Dai,Xizhao Wang,Xiaoying Zou,Chao Liu,Si Cen
出处
期刊:Neural Networks [Elsevier]
卷期号:154: 234-245 被引量:42
标识
DOI:10.1016/j.neunet.2022.07.014
摘要

One of the most effective ways to solve the problem of knowledge graph completion is embedding-based models. Graph neural networks (GNNs) are popular and promising embedding models which can exploit and use the structural information of neighbors in knowledge graphs. The current GNN-based knowledge graph completion methods assume that all neighbors of a node have equal importance. This assumption which cannot assign different weights to neighbors is pointed out in our study to be unreasonable. In addition, since the knowledge graph is a kind of heterogeneous graph with multiple relations, multiple complex interactions between nodes and neighbors can bring challenges to the effective message passing of GNNs. We then design a multi-relational graph attention network (MRGAT) which can adapt to different cases of heterogeneous multi-relational connections and then calculate the importance of different neighboring nodes through a self-attention layer. The incorporation of self-attention mechanism into the network with different node weights optimizes the network structure, and therefore, significantly results in a promotion of performance. We experimentally validate the rationality of our models on multiple benchmark knowledge graphs, where MRGAT achieves the best performance on various evaluation metrics including MRR score, Hits@ score compared with other state-of-the-art baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
心灵美金鑫完成签到,获得积分10
1秒前
3秒前
吾儿坤发布了新的文献求助10
4秒前
4秒前
hy完成签到,获得积分10
5秒前
小蘑菇应助边港洋采纳,获得10
5秒前
C57的狂想发布了新的文献求助10
6秒前
6秒前
7秒前
短短长又长完成签到 ,获得积分10
7秒前
将离完成签到,获得积分10
7秒前
8秒前
英勇无春完成签到,获得积分10
9秒前
善学以致用应助吾儿坤采纳,获得50
10秒前
星辰大海应助yiryir采纳,获得10
11秒前
CXX发布了新的文献求助10
11秒前
11秒前
小于发布了新的文献求助10
11秒前
CK完成签到 ,获得积分20
11秒前
脑洞疼应助eee采纳,获得10
12秒前
12秒前
开放的可冥完成签到,获得积分10
12秒前
科研通AI2S应助端庄的紫采纳,获得20
13秒前
张张完成签到 ,获得积分10
14秒前
刘小小123发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
温柔关注了科研通微信公众号
17秒前
61发布了新的文献求助10
17秒前
吾儿坤完成签到,获得积分10
17秒前
18秒前
Mikasaaaaa发布了新的文献求助10
19秒前
20秒前
20秒前
边港洋发布了新的文献求助10
20秒前
abe发布了新的文献求助10
23秒前
yiryir发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313609
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527613
捐赠科研通 2621558
什么是DOI,文献DOI怎么找? 1433832
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637