已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mechanical performance of bio-inspired hierarchical honeycomb metamaterials

辅助 材料科学 超材料 蜂巢 有限元法 复合材料 模数 变形(气象学) 蜂窝结构 变形机理 格子(音乐) 结构工程 微观结构 工程类 物理 光电子学 声学
作者
Mengchuan Xu,Zeang Zhao,Panding Wang,Shengyu Duan,Hongshuai Lei,Daining Fang
出处
期刊:International Journal of Solids and Structures [Elsevier]
卷期号:254-255: 111866-111866 被引量:41
标识
DOI:10.1016/j.ijsolstr.2022.111866
摘要

Natural materials with hierarchical structures usually have superior mechanical properties. Herein, inspired by the macro–micro coupling deformation characteristics of biomaterials, novel hierarchical auxetic-hexagonal honeycombs (AuxHex) metamaterials with various substructures, including equilateral triangles and double arrowheads lattice cells, were constructed. A universal analysis model of the plastic collapse stress was first established, considering the deformation behavior of both the primary and secondary structures. This mechanism-based method gets rid of redundant numerical fitting parameters, and is applicable to different hierarchical lattice structures. Typical hierarchical AuxHex specimens were prepared using selected laser melting and stainless steel. In-plane compression tests and finite element simulation results demonstrated that, in contrast to the regular structures, hierarchical honeycombs exhibit enhancement in their load-bearing capacities and energy absorption ability. The specific modulus of T-AuxHex and A-AuxHex were increased by about 180% and 45%, the specific strength rose by approximately 50% and 15%, and the specific energy absorption was improved by about 160% and 50%. The effects of geometrical parameters were systematically discussed to reveal the mechanisms underlying the enhancement of the above mechanical characteristics. The proposed theoretical model provides a new method for designing the mechanical properties of hierarchical metamaterials by tailoring the type and distribution of secondary structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的霆完成签到,获得积分10
1秒前
典雅问寒应助nico采纳,获得10
3秒前
6666完成签到,获得积分10
3秒前
慕青应助gg采纳,获得10
3秒前
3秒前
伊戈达拉一个大拉完成签到 ,获得积分10
4秒前
胖虎发布了新的文献求助10
6秒前
温暖眼神完成签到,获得积分10
6秒前
Carole发布了新的文献求助10
7秒前
Shyee完成签到 ,获得积分10
7秒前
Jasmine完成签到,获得积分10
8秒前
9秒前
高铭泽完成签到,获得积分10
10秒前
火神杯完成签到,获得积分10
10秒前
斯文败类应助hellogene采纳,获得10
10秒前
11秒前
Geass发布了新的文献求助10
12秒前
沉静乾完成签到,获得积分10
12秒前
高铭泽发布了新的文献求助10
14秒前
仵一完成签到,获得积分10
15秒前
科研通AI6应助火神杯采纳,获得10
15秒前
16秒前
16秒前
六书院完成签到,获得积分10
20秒前
20秒前
Dr_J完成签到,获得积分10
21秒前
21秒前
端庄洪纲完成签到 ,获得积分10
22秒前
Jason完成签到 ,获得积分10
23秒前
小李同学发布了新的文献求助10
24秒前
曲淳发布了新的文献求助10
25秒前
lx完成签到,获得积分10
25秒前
123完成签到 ,获得积分10
26秒前
27秒前
weibo完成签到,获得积分10
29秒前
英姑应助聪聪great采纳,获得10
32秒前
RWcreator完成签到 ,获得积分10
32秒前
橘子柚子完成签到 ,获得积分10
33秒前
DocM完成签到 ,获得积分10
34秒前
大包鸡完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504