亚硫酸盐
化学
催化作用
生物炭
激进的
降级(电信)
无机化学
光化学
有机化学
热解
计算机科学
电信
作者
Lizhen Feng,Yijin Yuan,Xianqin He,Mengsi Wu,Lizhi Zhang,Jingming Gong
标识
DOI:10.1016/j.jes.2022.04.033
摘要
Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes. Here, a composite of in-situ anchoring NiCo2O4 nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (NiCo2O4@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment. The synergistic coupling of BC and NiCo2O4 endows the resulting composite excellent catalytic activity. 82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L NiCo2O4@BC, 3.0 mmol/L sulfite in neutral environment. When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite), outstanding degradation efficiency (∼ 100%) were achieved in the next 10 min without any other energy input by the NiCo2O4@BC-sulfite system. The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined. A strong inner-sphere complexation (Co2+/Ni2+-SO32-) was explored between sulfite and the metal sites on the NiCo2O4@BC surface. The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions. The generated radicals, in particular the surface-bound radicals were involved in ATZ degradation. High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates. Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ. Finally, an underlying mechanism for ATZ removal was proposed. The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI