Maternal exposure to heavy metals and risk for severe congenital heart defects in offspring

百分位 Mercury(编程语言) 优势比 后代 置信区间 医学 生理学 怀孕 内科学 生物 数学 计算机科学 遗传学 统计 程序设计语言
作者
Chengrong Wang,Xin Pi,Shengju Yin,Mengyuan Liu,Tian Tian,Lei Jin,Jufen Liu,Zhiwen Li,Linlin Wang,Zhengwei Yuan,Yu Wang,Aiguo Ren
出处
期刊:Environmental Research [Elsevier]
卷期号:212: 113432-113432 被引量:23
标识
DOI:10.1016/j.envres.2022.113432
摘要

Congenital heart defects (CHDs) are the most common congenital malformations with a complex etiology, and environmental factors play an important role. Large epidemiology studies on prenatal exposure to selected heavy metals and their association with risk for CHDs are scarce and joint effects are not well understood. To examine the association between prenatal exposure to selected heavy metals and risk for CHDs. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the maternal plasma concentrations of arsenic, cadmium, mercury, lead, and manganese were in 303 CHD cases and 303 healthy controls that were recruited in eight hospitals in China. Generalized linear mixed model (GLMM) and Bayesian kernel machine regression (BKMR) were fitted to evaluate the individual and joint effects of metal concentrations on CHDs. In GLMM, two metals were each significantly associated with an increased risk for CHDs [adjusted odds ratio (95% confidence interval): mercury, 2.88 (1.22–6.77); lead, 2.74 (1.00–7.57)]. In BKMR, CHD risk increased with mixture levels of the five metals when their concentrations were at the 40th percentile or higher, compared to when all metals were below their 35th percentile, and mercury was the major metal that contributed to the mixture effect. The interaction between mercury and lead was observed in BKMR. Using metal concentrations in maternal plasma obtained during the second or third trimester as exposure markers, we found that the risk of CHDs increased with the levels of the mixtures of As, Cd, Hg, Pb, and Mn, with Hg being the most important contributor to the mixture effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangyangLiu完成签到,获得积分10
刚刚
1秒前
1秒前
123发布了新的文献求助10
1秒前
yaoccccchen应助mendicant采纳,获得10
2秒前
超级裁缝发布了新的文献求助10
2秒前
安然无恙完成签到,获得积分10
2秒前
2秒前
桐桐应助leslie采纳,获得10
3秒前
王誓言发布了新的文献求助10
3秒前
温柔孤兰发布了新的文献求助10
4秒前
Luke完成签到,获得积分10
4秒前
务实的西牛应助kuku采纳,获得10
4秒前
明亮的智宸完成签到,获得积分10
5秒前
云舒发布了新的文献求助10
7秒前
allshestar完成签到 ,获得积分10
8秒前
9秒前
9秒前
舒心的语芹完成签到,获得积分20
11秒前
jiayou完成签到,获得积分10
11秒前
11秒前
若尘完成签到,获得积分10
12秒前
远处的立交完成签到,获得积分10
12秒前
B1ackSugar完成签到,获得积分10
12秒前
14秒前
BruceYuan完成签到,获得积分10
14秒前
王誓言完成签到,获得积分10
15秒前
15秒前
排列组合式文章完成签到,获得积分10
16秒前
柠檬泡芙发布了新的文献求助20
17秒前
18秒前
bkagyin应助超级裁缝采纳,获得10
18秒前
李志平完成签到 ,获得积分10
20秒前
勤能补拙发布了新的文献求助10
20秒前
BruceYuan发布了新的文献求助10
21秒前
21秒前
小红发布了新的文献求助10
22秒前
朴实寻琴发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243688
求助须知:如何正确求助?哪些是违规求助? 2887542
关于积分的说明 8248974
捐赠科研通 2556261
什么是DOI,文献DOI怎么找? 1384337
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776