Maternal exposure to heavy metals and risk for severe congenital heart defects in offspring

百分位 Mercury(编程语言) 优势比 后代 置信区间 医学 生理学 怀孕 内科学 生物 数学 计算机科学 遗传学 统计 程序设计语言
作者
Chengrong Wang,Xin Pi,Shengju Yin,Mengyuan Liu,Tian Tian,Lei Jin,Jufen Liu,Zhiwen Li,Linlin Wang,Zhengwei Yuan,Yu Wang,Aiguo Ren
出处
期刊:Environmental Research [Elsevier]
卷期号:212: 113432-113432 被引量:26
标识
DOI:10.1016/j.envres.2022.113432
摘要

Congenital heart defects (CHDs) are the most common congenital malformations with a complex etiology, and environmental factors play an important role. Large epidemiology studies on prenatal exposure to selected heavy metals and their association with risk for CHDs are scarce and joint effects are not well understood. To examine the association between prenatal exposure to selected heavy metals and risk for CHDs. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the maternal plasma concentrations of arsenic, cadmium, mercury, lead, and manganese were in 303 CHD cases and 303 healthy controls that were recruited in eight hospitals in China. Generalized linear mixed model (GLMM) and Bayesian kernel machine regression (BKMR) were fitted to evaluate the individual and joint effects of metal concentrations on CHDs. In GLMM, two metals were each significantly associated with an increased risk for CHDs [adjusted odds ratio (95% confidence interval): mercury, 2.88 (1.22–6.77); lead, 2.74 (1.00–7.57)]. In BKMR, CHD risk increased with mixture levels of the five metals when their concentrations were at the 40th percentile or higher, compared to when all metals were below their 35th percentile, and mercury was the major metal that contributed to the mixture effect. The interaction between mercury and lead was observed in BKMR. Using metal concentrations in maternal plasma obtained during the second or third trimester as exposure markers, we found that the risk of CHDs increased with the levels of the mixtures of As, Cd, Hg, Pb, and Mn, with Hg being the most important contributor to the mixture effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxc完成签到,获得积分10
1秒前
lbt完成签到 ,获得积分10
2秒前
yao完成签到 ,获得积分10
3秒前
3秒前
5秒前
6秒前
6秒前
doudou完成签到 ,获得积分10
6秒前
BCS完成签到,获得积分10
6秒前
领导范儿应助KYN采纳,获得10
6秒前
7秒前
独特的莫言完成签到,获得积分10
9秒前
lin发布了新的文献求助10
10秒前
aero完成签到 ,获得积分10
12秒前
123号完成签到,获得积分10
14秒前
充电宝应助TT采纳,获得10
16秒前
17秒前
17秒前
英姑应助荒野星辰采纳,获得10
19秒前
19秒前
YHY完成签到,获得积分10
21秒前
科研通AI5应助魏伯安采纳,获得10
21秒前
caoyy发布了新的文献求助10
21秒前
22秒前
23秒前
张喻235532完成签到,获得积分10
24秒前
失眠虔纹发布了新的文献求助10
25秒前
香蕉觅云应助糊涂的小伙采纳,获得10
25秒前
25秒前
sutharsons应助科研通管家采纳,获得200
27秒前
打打应助科研通管家采纳,获得10
27秒前
axin应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
27秒前
李健应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849