Interpretable machine learning for developing high-performance organic solar cells

有机太阳能电池 互连性 过程(计算) 材料科学 计算机科学 人工智能 田口方法 轨道能级差 财产(哲学) 实验设计 机器学习 生物系统 生化工程 分子 物理 聚合物 数学 工程类 哲学 操作系统 复合材料 认识论 统计 生物 量子力学
作者
Elyas Abbasi Jannat Abadi,Harikrishna Sahu,Seyed Morteza Javadpour,Masoud Goharimanesh
出处
期刊:Materials Today Energy [Elsevier]
卷期号:25: 100969-100969 被引量:15
标识
DOI:10.1016/j.mtener.2022.100969
摘要

Rapidly screening the underlying relationships between organic photovoltaics (OPVs) and their chemical structures remains an open challenge due to their complex interconnectivity. In this study, a new methodology for structure-property mappings of OPVs and device performances prediction is designed by combining the machine learning (ML) approach with the Taguchi Design of Experiments (TDOE). The established structure-property relationships are built up with the ML models from 240 data points of small molecule OPV systems and ten important microscopic features of OPVs. The quite remarkable performance of the ML model (Pearson's coefficient = 0.79) depicts its ability to extract hidden physical principles of OPVs. The TDOE model shows that molecular orbitals other than the highest and the lowest ones that are not frequently considered in the designing process of OPVs play quite essential roles in developing promising OPV materials. Moreover, strategies to boost the design of high-performing devices with different values of the considered features are also extracted from the model with the DOE approach. These results reveal that ML combined with DOE is an impressive package for guiding the design process effectively and efficiently. • New design guidelines for small molecule organic solar cell materials developed using interpretable machine learning. • The design model can predict the underlying physical phenomena between considered features. • The relations between orbitals rather than just HOMO and LUMO and optical bandgap were investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狂野觅云发布了新的文献求助10
1秒前
wanci应助yyy采纳,获得10
1秒前
Abao发布了新的文献求助10
2秒前
无花果应助jagger采纳,获得10
2秒前
旺大财发布了新的文献求助10
2秒前
tanbao完成签到,获得积分10
3秒前
共享精神应助MHB采纳,获得50
3秒前
美丽小蕾发布了新的文献求助10
3秒前
anan发布了新的文献求助10
3秒前
goodgoodstudy发布了新的文献求助10
3秒前
3秒前
huifang完成签到,获得积分10
3秒前
yan儿完成签到,获得积分10
4秒前
5秒前
Dipsy完成签到,获得积分10
5秒前
6秒前
英姑应助狂野觅云采纳,获得10
6秒前
晶晶妹妹完成签到,获得积分10
7秒前
黑妖完成签到,获得积分10
7秒前
7秒前
糊糊完成签到,获得积分10
7秒前
温婉的荷花完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
俭朴的明轩完成签到,获得积分20
9秒前
张童鞋完成签到 ,获得积分10
9秒前
9秒前
9秒前
Autoimmune发布了新的文献求助10
9秒前
帅气惜霜发布了新的文献求助10
10秒前
苏照杭应助Ll采纳,获得10
10秒前
LL完成签到 ,获得积分10
11秒前
后青春期的痘完成签到,获得积分10
11秒前
sun完成签到 ,获得积分10
12秒前
jiang完成签到 ,获得积分10
13秒前
13秒前
苏卿应助郑开司09采纳,获得10
13秒前
湖月照我影完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762