Interpretable machine learning for developing high-performance organic solar cells

有机太阳能电池 互连性 过程(计算) 材料科学 计算机科学 人工智能 田口方法 轨道能级差 财产(哲学) 实验设计 机器学习 生物系统 生化工程 分子 物理 聚合物 数学 复合材料 工程类 哲学 统计 认识论 量子力学 生物 操作系统
作者
Elyas Abbasi Jannat Abadi,Harikrishna Sahu,Seyed Morteza Javadpour,Masoud Goharimanesh
出处
期刊:Materials Today Energy [Elsevier BV]
卷期号:25: 100969-100969 被引量:15
标识
DOI:10.1016/j.mtener.2022.100969
摘要

Rapidly screening the underlying relationships between organic photovoltaics (OPVs) and their chemical structures remains an open challenge due to their complex interconnectivity. In this study, a new methodology for structure-property mappings of OPVs and device performances prediction is designed by combining the machine learning (ML) approach with the Taguchi Design of Experiments (TDOE). The established structure-property relationships are built up with the ML models from 240 data points of small molecule OPV systems and ten important microscopic features of OPVs. The quite remarkable performance of the ML model (Pearson's coefficient = 0.79) depicts its ability to extract hidden physical principles of OPVs. The TDOE model shows that molecular orbitals other than the highest and the lowest ones that are not frequently considered in the designing process of OPVs play quite essential roles in developing promising OPV materials. Moreover, strategies to boost the design of high-performing devices with different values of the considered features are also extracted from the model with the DOE approach. These results reveal that ML combined with DOE is an impressive package for guiding the design process effectively and efficiently. • New design guidelines for small molecule organic solar cell materials developed using interpretable machine learning. • The design model can predict the underlying physical phenomena between considered features. • The relations between orbitals rather than just HOMO and LUMO and optical bandgap were investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Feng发布了新的文献求助10
1秒前
Cactus应助沉静从蓉采纳,获得10
1秒前
1秒前
CipherSage应助nana采纳,获得10
2秒前
GS11完成签到,获得积分10
2秒前
xu发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
Jeffreyzhong完成签到,获得积分10
2秒前
whatever应助刻苦傲安采纳,获得20
3秒前
3秒前
4秒前
4秒前
科研通AI2S应助gh采纳,获得20
6秒前
luluyu发布了新的文献求助30
6秒前
直率沂发布了新的文献求助10
7秒前
郝瑞之发布了新的文献求助10
8秒前
橘灯发布了新的文献求助10
8秒前
8秒前
8秒前
Feng完成签到,获得积分10
9秒前
9秒前
ED应助鹅帮逮采纳,获得10
9秒前
11秒前
小二郎应助孟欣玥采纳,获得10
11秒前
yangmengyuan完成签到 ,获得积分10
11秒前
研友_Z1WvKL发布了新的文献求助10
11秒前
慕青应助直率沂采纳,获得10
12秒前
平常叫兽发布了新的文献求助10
12秒前
13秒前
搜集达人应助沉静从蓉采纳,获得10
13秒前
轻松的如冰完成签到,获得积分10
13秒前
13秒前
夏天完成签到,获得积分10
14秒前
14秒前
小赵发布了新的文献求助10
14秒前
15秒前
15秒前
旷野发布了新的文献求助10
15秒前
爆米花应助嘤嘤嘤采纳,获得30
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794