Interpretable machine learning for developing high-performance organic solar cells

有机太阳能电池 互连性 过程(计算) 材料科学 计算机科学 人工智能 田口方法 轨道能级差 财产(哲学) 实验设计 机器学习 生物系统 生化工程 分子 物理 聚合物 数学 工程类 哲学 操作系统 复合材料 认识论 统计 生物 量子力学
作者
Elyas Abbasi Jannat Abadi,Harikrishna Sahu,Seyed Morteza Javadpour,Masoud Goharimanesh
出处
期刊:Materials Today Energy [Elsevier]
卷期号:25: 100969-100969 被引量:15
标识
DOI:10.1016/j.mtener.2022.100969
摘要

Rapidly screening the underlying relationships between organic photovoltaics (OPVs) and their chemical structures remains an open challenge due to their complex interconnectivity. In this study, a new methodology for structure-property mappings of OPVs and device performances prediction is designed by combining the machine learning (ML) approach with the Taguchi Design of Experiments (TDOE). The established structure-property relationships are built up with the ML models from 240 data points of small molecule OPV systems and ten important microscopic features of OPVs. The quite remarkable performance of the ML model (Pearson's coefficient = 0.79) depicts its ability to extract hidden physical principles of OPVs. The TDOE model shows that molecular orbitals other than the highest and the lowest ones that are not frequently considered in the designing process of OPVs play quite essential roles in developing promising OPV materials. Moreover, strategies to boost the design of high-performing devices with different values of the considered features are also extracted from the model with the DOE approach. These results reveal that ML combined with DOE is an impressive package for guiding the design process effectively and efficiently. • New design guidelines for small molecule organic solar cell materials developed using interpretable machine learning. • The design model can predict the underlying physical phenomena between considered features. • The relations between orbitals rather than just HOMO and LUMO and optical bandgap were investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
搜集达人应助myuniv采纳,获得10
3秒前
4秒前
烟花应助无一采纳,获得10
4秒前
4秒前
安之若素完成签到,获得积分10
5秒前
潘森爱科研完成签到,获得积分10
6秒前
suibian发布了新的文献求助10
9秒前
如意鱼完成签到,获得积分10
9秒前
李星云发布了新的文献求助10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得60
9秒前
9秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
chengwanying完成签到 ,获得积分10
10秒前
12秒前
古月月完成签到,获得积分10
12秒前
13秒前
小二郎应助wuzhizhiya采纳,获得10
16秒前
yan完成签到,获得积分10
16秒前
Wambat1116完成签到,获得积分20
19秒前
22秒前
陈陈完成签到 ,获得积分10
24秒前
大模型应助ff采纳,获得10
25秒前
Rebekah完成签到,获得积分0
25秒前
26秒前
一瓶牛发布了新的文献求助10
26秒前
乐乐应助suibian采纳,获得10
27秒前
wangyun完成签到,获得积分10
28秒前
一一一完成签到,获得积分10
29秒前
TWei发布了新的文献求助10
30秒前
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149617
求助须知:如何正确求助?哪些是违规求助? 2800663
关于积分的说明 7841062
捐赠科研通 2458157
什么是DOI,文献DOI怎么找? 1308340
科研通“疑难数据库(出版商)”最低求助积分说明 628479
版权声明 601706