亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence trained with integration of multiparametric MR‐US imaging data and fusion biopsy trajectory‐proven pathology data for 3D prediction of prostate cancer: A proof‐of‐concept study

前列腺癌 前列腺切除术 医学 人工智能 医学影像学 前列腺 卷积神经网络 活检 磁共振成像 深度学习 数字化病理学 放射科 计算机科学 癌症 内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate [Wiley]
卷期号:82 (7): 793-803 被引量:6
标识
DOI:10.1002/pros.24321
摘要

We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
28秒前
sfwrbh发布了新的文献求助10
33秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
47秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
archer01发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Maria完成签到,获得积分10
1分钟前
1分钟前
TS6539发布了新的文献求助10
1分钟前
TS6539完成签到,获得积分10
2分钟前
bababiba完成签到,获得积分10
2分钟前
2分钟前
CipherSage应助archer01采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
月儿完成签到 ,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
小江完成签到,获得积分10
5分钟前
gszy1975完成签到,获得积分10
5分钟前
6分钟前
6分钟前
Chaos完成签到 ,获得积分10
6分钟前
光合作用完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264