Artificial intelligence trained with integration of multiparametric MR‐US imaging data and fusion biopsy trajectory‐proven pathology data for 3D prediction of prostate cancer: A proof‐of‐concept study

前列腺癌 前列腺切除术 医学 人工智能 医学影像学 前列腺 卷积神经网络 活检 磁共振成像 深度学习 数字化病理学 放射科 计算机科学 癌症 内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate [Wiley]
卷期号:82 (7): 793-803 被引量:6
标识
DOI:10.1002/pros.24321
摘要

We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
罗攀发布了新的文献求助10
1秒前
1秒前
1秒前
luo完成签到,获得积分10
3秒前
羽安发布了新的文献求助10
3秒前
科研通AI2S应助lyy采纳,获得10
3秒前
4秒前
4秒前
laber应助零可林采纳,获得50
6秒前
6秒前
lcc发布了新的文献求助10
6秒前
6秒前
tiffany发布了新的文献求助10
7秒前
木木完成签到,获得积分10
7秒前
7秒前
8秒前
丰富的不惜完成签到,获得积分10
8秒前
聪明的你完成签到,获得积分10
8秒前
8秒前
银鱼在游发布了新的文献求助10
9秒前
comz完成签到,获得积分10
9秒前
lalatrouble完成签到,获得积分10
9秒前
小薛发布了新的文献求助10
10秒前
mirror完成签到,获得积分10
11秒前
Patience发布了新的文献求助30
11秒前
阿米发布了新的文献求助10
12秒前
希望天下0贩的0应助lcc采纳,获得10
12秒前
13秒前
13秒前
打打应助JLLLLLLLL采纳,获得10
13秒前
y13333完成签到,获得积分10
14秒前
14秒前
bhkwxdxy完成签到,获得积分10
16秒前
16秒前
不安海蓝完成签到,获得积分10
16秒前
大个应助Dskelf采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
饼干发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858