前列腺癌
前列腺切除术
医学
人工智能
医学影像学
前列腺
卷积神经网络
活检
磁共振成像
深度学习
数字化病理学
放射科
计算机科学
癌症
内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate
[Wiley]
日期:2022-02-22
卷期号:82 (7): 793-803
被引量:6
摘要
We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI