Artificial intelligence trained with integration of multiparametric MR‐US imaging data and fusion biopsy trajectory‐proven pathology data for 3D prediction of prostate cancer: A proof‐of‐concept study

前列腺癌 前列腺切除术 医学 人工智能 医学影像学 前列腺 卷积神经网络 活检 磁共振成像 深度学习 数字化病理学 放射科 计算机科学 癌症 内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate [Wiley]
卷期号:82 (7): 793-803 被引量:6
标识
DOI:10.1002/pros.24321
摘要

We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
1秒前
1秒前
1秒前
高大黄蜂完成签到,获得积分10
2秒前
新青年应助gmc采纳,获得10
2秒前
勤劳落雁发布了新的文献求助10
2秒前
超帅的从菡完成签到 ,获得积分10
2秒前
leena发布了新的文献求助10
2秒前
斯文败类应助Hh采纳,获得10
3秒前
高大黄蜂发布了新的文献求助10
4秒前
英姑应助guygun采纳,获得10
4秒前
Feng完成签到,获得积分10
5秒前
6秒前
花花完成签到,获得积分10
6秒前
一言矣完成签到 ,获得积分10
7秒前
海绵宝宝完成签到,获得积分10
8秒前
贪吃的猴子完成签到,获得积分10
8秒前
long完成签到 ,获得积分10
9秒前
研友_LOqqmZ发布了新的文献求助10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
kilig应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
清心淡如水完成签到,获得积分10
10秒前
Hao应助命运的X号采纳,获得10
11秒前
12秒前
13秒前
哭泣恋风完成签到 ,获得积分10
13秒前
zhizhzihzih完成签到,获得积分10
13秒前
13秒前
2568269431完成签到 ,获得积分10
14秒前
panzer发布了新的文献求助10
14秒前
14秒前
15秒前
smile发布了新的文献求助10
15秒前
16秒前
酷炫蚂蚁发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824