已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence trained with integration of multiparametric MR‐US imaging data and fusion biopsy trajectory‐proven pathology data for 3D prediction of prostate cancer: A proof‐of‐concept study

前列腺癌 前列腺切除术 医学 人工智能 医学影像学 前列腺 卷积神经网络 活检 磁共振成像 深度学习 数字化病理学 放射科 计算机科学 癌症 内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate [Wiley]
卷期号:82 (7): 793-803 被引量:6
标识
DOI:10.1002/pros.24321
摘要

We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fancy发布了新的文献求助10
刚刚
可爱的函函应助和abc采纳,获得10
刚刚
刚刚
刚刚
1秒前
研友_VZG7GZ应助归一然采纳,获得10
2秒前
今天还要努力呀完成签到,获得积分10
3秒前
独特的秋发布了新的文献求助10
5秒前
5秒前
乔凌云发布了新的文献求助10
9秒前
hyy完成签到,获得积分10
10秒前
樱桃完成签到 ,获得积分10
11秒前
14秒前
yolo完成签到,获得积分10
16秒前
Hello应助务实保温杯采纳,获得10
17秒前
NexusExplorer应助乔凌云采纳,获得10
17秒前
18秒前
18秒前
义气翩跹发布了新的文献求助10
18秒前
hai发布了新的文献求助10
18秒前
54Darren发布了新的文献求助50
23秒前
Morii完成签到,获得积分10
24秒前
24秒前
123姚发布了新的文献求助50
25秒前
懵懂的枫叶完成签到 ,获得积分10
25秒前
zijia完成签到,获得积分20
25秒前
26秒前
26秒前
28秒前
30秒前
研友_VZG7GZ应助呼斯冷采纳,获得10
30秒前
GQC发布了新的文献求助10
30秒前
455发布了新的文献求助10
32秒前
32秒前
cyy发布了新的文献求助10
32秒前
32秒前
乔凌云发布了新的文献求助10
33秒前
33秒前
所所应助Morii采纳,获得10
33秒前
天宇南神完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938