Artificial intelligence trained with integration of multiparametric MR‐US imaging data and fusion biopsy trajectory‐proven pathology data for 3D prediction of prostate cancer: A proof‐of‐concept study

前列腺癌 前列腺切除术 医学 人工智能 医学影像学 前列腺 卷积神经网络 活检 磁共振成像 深度学习 数字化病理学 放射科 计算机科学 癌症 内科学
作者
Masatomo Kaneko,Norio Fukuda,Hitomi Nagano,Kaori Yamada,Kazuo Yamada,Eiichi Konishi,Yoshinobu Sato,Osamu Ukimura
出处
期刊:The Prostate [Wiley]
卷期号:82 (7): 793-803 被引量:6
标识
DOI:10.1002/pros.24321
摘要

We aimed to develop an artificial intelligence (AI) algorithm that predicts the volume and location of clinically significant cancer (CSCa) using convolutional neural network (CNN) trained with integration of multiparametric MR-US image data and MRI-US fusion prostate biopsy (MRI-US PBx) trajectory-proven pathology data.Twenty consecutive patients prospectively underwent MRI-US PBx, followed by robot-assisted radical prostatectomy (RARP). The AI algorithm was trained with the integration of MR-US image data with a MRI-US PBx trajectory-proven pathology. The relationship with the 3D-cancer-mapping of RARP specimens was compared between AI system-suggested 3D-CSCa mapping and an experienced radiologist's suggested 3D-CSCa mapping on MRI alone according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2. The characteristics of detected and undetected tumors at AI were compared in 22,968 image data. The relationships between CSCa volumes and volumes predicted by AI as well as the radiologist's reading based on PI-RADS were analyzed.The concordance of the CSCa center with that in RARP specimens was significantly higher in the AI prediction than the radiologist' reading (83% vs. 54%, p = 0.036). CSCa volumes predicted with AI were more accurate (r = 0.90, p < 0.001) than the radiologist's reading. The limitations include that the elastic fusion technology has its own registration error.We presented a novel pilot AI algorithm for 3D prediction of PCa. AI was trained by integration of multiparametric MR-US image data and fusion biopsy trajectory-proven pathology data. This deep learning AI model may more precisely predict the 3D mapping of CSCa in its volume and center location than a radiologist's reading based on PI-RADS version 2, and has potential in the planning of focal therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无情草莓完成签到,获得积分10
1秒前
yuwshuihen完成签到,获得积分10
1秒前
yxu完成签到,获得积分10
1秒前
Belinda完成签到,获得积分10
1秒前
一一发布了新的文献求助10
1秒前
可乐完成签到,获得积分10
1秒前
dili827完成签到,获得积分20
1秒前
成梦发布了新的文献求助10
1秒前
DJ完成签到,获得积分10
1秒前
1秒前
2秒前
Afei完成签到,获得积分10
3秒前
不眠完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
zywzyw完成签到,获得积分10
4秒前
露露完成签到,获得积分10
4秒前
4秒前
5秒前
梁多杰完成签到,获得积分10
5秒前
科研狗完成签到,获得积分10
5秒前
马丝雨完成签到,获得积分10
6秒前
噫故完成签到,获得积分10
6秒前
xiaozaix完成签到,获得积分10
6秒前
清脆天空发布了新的文献求助10
6秒前
成梦完成签到,获得积分10
7秒前
orixero应助李多多采纳,获得10
8秒前
8秒前
8秒前
满意沅完成签到,获得积分10
8秒前
背后幻竹发布了新的文献求助10
8秒前
9秒前
Charming完成签到,获得积分10
9秒前
小二郎应助WW采纳,获得10
9秒前
Astral完成签到,获得积分10
10秒前
lj完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330