Deep integrated pipeline of segmentation guided classification of breast cancer from ultrasound images

计算机科学 预处理器 分割 管道(软件) 人工智能 乳腺癌 Sørensen–骰子系数 深度学习 模式识别(心理学) 工件(错误) 乳腺超声检查 学习迁移 图像分割 医学 癌症 乳腺摄影术 内科学 程序设计语言
作者
Muhammad Sakib Khan Inan,Fahim Irfan Alam,Rizwan Hasan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:75: 103553-103553 被引量:30
标识
DOI:10.1016/j.bspc.2022.103553
摘要

Breast cancer has become a symbol of tremendous concern in the modern world, as it is one of the major causes of cancer mortality worldwide. In this regard, breast ultrasonography images are frequently utilized by doctors to diagnose breast cancer at an early stage. However, the complex artifacts and heavily noised breast ultrasonography images make diagnosis a great challenge. Furthermore, the ever-increasing number of patients being screened for breast cancer necessitates the use of automated end-to-end technology for highly accurate diagnosis at a low cost and in a short time. In this concern, to develop an end-to-end integrated pipeline for breast ultrasonography image classification, we conducted an exhaustive analysis of image preprocessing methods such as K Means++ and SLIC, as well as four transfer learning models such as VGG16, VGG19, DenseNet121, and ResNet50. With a Dice-coefficient score of 63.4 in the segmentation stage and accuracy and an F1-Score (Benign) of 73.72 percent and 78.92 percent in the classification stage, the combination of SLIC, UNET, and VGG16 outperformed all other integrated combinations. Finally, we have proposed an end to end integrated automated pipelining framework which includes preprocessing with SLIC to capture super-pixel features from the complex artifact of ultrasonography images, complementing semantic segmentation with modified U-Net, leading to breast tumor classification using a transfer learning approach with a pre-trained VGG16 and a densely connected neural network. The proposed automated pipeline can be effectively implemented to assist medical practitioners in making more accurate and timely diagnoses of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海一兰完成签到,获得积分10
1秒前
罗洛乐发布了新的文献求助10
1秒前
Jasper应助125采纳,获得10
2秒前
2秒前
3秒前
4秒前
miaomiao完成签到,获得积分10
4秒前
科目三应助hhh采纳,获得10
4秒前
5秒前
我爱Chem发布了新的文献求助10
5秒前
Ywffffff发布了新的文献求助10
5秒前
5秒前
6秒前
激动的猫咪完成签到,获得积分10
7秒前
8秒前
小慧发布了新的文献求助10
8秒前
不爱吃醋发布了新的文献求助10
9秒前
优雅的鲂完成签到,获得积分10
10秒前
觉皇发布了新的文献求助10
10秒前
2280479391发布了新的文献求助30
10秒前
害羞紫伊发布了新的文献求助10
11秒前
pjm发布了新的文献求助10
11秒前
复杂数据线完成签到,获得积分10
11秒前
卡诺循环完成签到,获得积分10
12秒前
好运莲莲发布了新的文献求助10
12秒前
mount发布了新的文献求助20
12秒前
汉堡包应助大胆的小白菜采纳,获得10
13秒前
曾高高完成签到,获得积分10
13秒前
14秒前
17秒前
调皮傲易完成签到 ,获得积分10
18秒前
19秒前
crazy_paper发布了新的文献求助10
19秒前
LXR发布了新的文献求助10
19秒前
2280479391完成签到,获得积分10
19秒前
FashionBoy应助害羞紫伊采纳,获得10
20秒前
好运莲莲完成签到,获得积分10
20秒前
啵啵完成签到,获得积分10
20秒前
21秒前
服部平次发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178