Skeleton Sequence and RGB Frame Based Multi-Modality Feature Fusion Network for Action Recognition

RGB颜色模型 计算机科学 人工智能 特征(语言学) 计算机视觉 帧(网络) 模态(人机交互) 序列(生物学) 模式识别(心理学) 电信 哲学 语言学 生物 遗传学
作者
Xiaoguang Zhu,Ye Zhu,Haoyu Wang,Honglin Wen,Yan Yan,Peilin Liu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3): 1-24 被引量:18
标识
DOI:10.1145/3491228
摘要

Action recognition has been a heated topic in computer vision for its wide application in vision systems. Previous approaches achieve improvement by fusing the modalities of the skeleton sequence and RGB video. However, such methods pose a dilemma between the accuracy and efficiency for the high complexity of the RGB video network. To solve the problem, we propose a multi-modality feature fusion network to combine the modalities of the skeleton sequence and RGB frame instead of the RGB video, as the key information contained by the combination of the skeleton sequence and RGB frame is close to that of the skeleton sequence and RGB video. In this way, complementary information is retained while the complexity is reduced by a large margin. To better explore the correspondence of the two modalities, a two-stage fusion framework is introduced in the network. In the early fusion stage, we introduce a skeleton attention module that projects the skeleton sequence on the single RGB frame to help the RGB frame focus on the limb movement regions. In the late fusion stage, we propose a cross-attention module to fuse the skeleton feature and the RGB feature by exploiting the correlation. Experiments on two benchmarks, NTU RGB+D and SYSU, show that the proposed model achieves competitive performance compared with the state-of-the-art methods while reducing the complexity of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ZhouJing采纳,获得10
刚刚
老迟到的小蘑菇完成签到,获得积分10
刚刚
万能图书馆应助123456采纳,获得10
1秒前
潇潇雨歇发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
磷酸丙糖异构酶完成签到,获得积分10
6秒前
Maestro_S应助妮可采纳,获得10
6秒前
7秒前
体贴的夜安完成签到,获得积分10
7秒前
KatzeBaliey完成签到,获得积分10
8秒前
果味叶发布了新的文献求助10
8秒前
along完成签到 ,获得积分10
8秒前
9秒前
M_发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
lalala发布了新的文献求助30
10秒前
Jannie应助徐海文采纳,获得10
10秒前
10秒前
mxq完成签到,获得积分10
11秒前
夕诙应助hhh采纳,获得20
11秒前
adheret完成签到,获得积分10
12秒前
along关注了科研通微信公众号
13秒前
深情安青应助洁净灭男采纳,获得10
14秒前
14秒前
风清扬发布了新的文献求助10
14秒前
weiv发布了新的文献求助10
15秒前
16秒前
丁玲玲完成签到 ,获得积分10
17秒前
mue完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
领导范儿应助Sayhai采纳,获得10
21秒前
123发布了新的文献求助10
23秒前
FYW发布了新的文献求助10
23秒前
mue发布了新的文献求助10
23秒前
24秒前
幽默翎发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601793
求助须知:如何正确求助?哪些是违规求助? 4011315
关于积分的说明 12418979
捐赠科研通 3691357
什么是DOI,文献DOI怎么找? 2035038
邀请新用户注册赠送积分活动 1068322
科研通“疑难数据库(出版商)”最低求助积分说明 952852