Skeleton Sequence and RGB Frame Based Multi-Modality Feature Fusion Network for Action Recognition

RGB颜色模型 计算机科学 人工智能 特征(语言学) 计算机视觉 帧(网络) 模态(人机交互) 序列(生物学) 模式识别(心理学) 电信 哲学 语言学 生物 遗传学
作者
Xiaoguang Zhu,Ye Zhu,Haoyu Wang,Honglin Wen,Yan Yan,Peilin Liu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3): 1-24 被引量:35
标识
DOI:10.1145/3491228
摘要

Action recognition has been a heated topic in computer vision for its wide application in vision systems. Previous approaches achieve improvement by fusing the modalities of the skeleton sequence and RGB video. However, such methods pose a dilemma between the accuracy and efficiency for the high complexity of the RGB video network. To solve the problem, we propose a multi-modality feature fusion network to combine the modalities of the skeleton sequence and RGB frame instead of the RGB video, as the key information contained by the combination of the skeleton sequence and RGB frame is close to that of the skeleton sequence and RGB video. In this way, complementary information is retained while the complexity is reduced by a large margin. To better explore the correspondence of the two modalities, a two-stage fusion framework is introduced in the network. In the early fusion stage, we introduce a skeleton attention module that projects the skeleton sequence on the single RGB frame to help the RGB frame focus on the limb movement regions. In the late fusion stage, we propose a cross-attention module to fuse the skeleton feature and the RGB feature by exploiting the correlation. Experiments on two benchmarks, NTU RGB+D and SYSU, show that the proposed model achieves competitive performance compared with the state-of-the-art methods while reducing the complexity of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七叶树完成签到,获得积分10
1秒前
1秒前
爆米花应助清爽泥猴桃采纳,获得10
1秒前
皮蛋完成签到,获得积分10
2秒前
彭于彦祖应助奔奔采纳,获得30
2秒前
2秒前
jxt完成签到,获得积分10
2秒前
乐乐应助亚尔采纳,获得10
3秒前
Leona666发布了新的文献求助100
4秒前
上官若男应助拼搏的从雪采纳,获得10
4秒前
MMM发布了新的文献求助10
4秒前
忧心的捕完成签到,获得积分10
4秒前
自由妙竹完成签到 ,获得积分10
4秒前
kurumi0601完成签到,获得积分10
4秒前
4秒前
端庄千琴完成签到,获得积分10
4秒前
rorraine_xu完成签到,获得积分10
4秒前
在水一方应助江河JT采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
fengjingjun完成签到,获得积分10
5秒前
5秒前
6秒前
0994完成签到 ,获得积分10
6秒前
852应助林加雄采纳,获得10
6秒前
7秒前
Criminology34应助Iris99采纳,获得10
7秒前
8秒前
Owen应助忧心的捕采纳,获得10
8秒前
小二郎应助ZiruiDing采纳,获得10
9秒前
9秒前
9秒前
9秒前
菜菜发布了新的文献求助10
9秒前
Akim应助啊懂采纳,获得10
10秒前
贰拾发布了新的文献求助10
10秒前
亚尔完成签到,获得积分10
10秒前
10秒前
ee发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786