Trajectory Planning for Hybrid Unmanned Aerial Underwater Vehicles with Smooth Media Transition

水下 弹道 背景(考古学) 机器人 避碰 计算机科学 控制工程 运动规划 树(集合论) 适应(眼睛) 工程类 人工智能 碰撞 数学 地理 计算机安全 光学 物理 数学分析 考古 天文
作者
Pedro M. Pinheiro,Armando Alves Neto,Ricardo Bedin Grando,César Bastos da Silva,Vivian Misaki Aoki,Dayana Santos Cardoso,Alexandre C. Horn,Paulo Drews
出处
期刊:Journal of Intelligent and Robotic Systems [Springer Nature]
卷期号:104 (3) 被引量:18
标识
DOI:10.1007/s10846-021-01567-z
摘要

In the last decade, a great effort has been employed in the study of Hybrid Unmanned Aerial Underwater Vehicles, robots that can easily fly and dive into the water with different levels of mechanical adaptation. However, most of this literature is concentrated on physical design, practical issues of construction, and, more recently, low-level control strategies. Little has been done in the context of high-level intelligence, such as motion planning and interactions with the real world. Therefore, we proposed in this paper a trajectory planning approach that allows collision avoidance against unknown obstacles and smooth transitions between aerial and aquatic media. Our method is based on a variant of the classic Rapidly-exploring Random Tree, whose main advantages are the capability to deal with obstacles, complex nonlinear dynamics, model uncertainties, and external disturbances. The approach uses the dynamic model of the HyDrone, a hybrid vehicle proposed with high underwater performance, but we believe it can be easily generalized to other types of aerial/aquatic platforms. In the experimental section, we present simulated results in environments filled with obstacles, where the robot is commanded to perform different media movements, demonstrating the applicability of our strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
喵总发布了新的文献求助10
4秒前
wanci应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得30
5秒前
cara应助科研通管家采纳,获得10
5秒前
杳鸢应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得30
5秒前
杳鸢应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得30
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
8秒前
共享精神应助喵总采纳,获得10
8秒前
ding应助123456采纳,获得10
9秒前
Hahahahahahah完成签到,获得积分10
11秒前
黄可以完成签到,获得积分10
12秒前
hamburger完成签到,获得积分10
13秒前
甜蜜匕发布了新的文献求助10
13秒前
wanci应助撒大苏打采纳,获得10
14秒前
drwang120完成签到 ,获得积分10
15秒前
16秒前
朴实寻琴完成签到 ,获得积分10
17秒前
18秒前
Nuyoah完成签到,获得积分10
20秒前
123456发布了新的文献求助10
21秒前
25秒前
科研通AI2S应助Nuyoah采纳,获得10
30秒前
撒大苏打发布了新的文献求助10
32秒前
reck完成签到,获得积分10
34秒前
xx发布了新的文献求助30
35秒前
Merak完成签到 ,获得积分10
35秒前
撒大苏打完成签到,获得积分10
36秒前
Merak关注了科研通微信公众号
38秒前
墨水应助gz采纳,获得20
40秒前
41秒前
wang完成签到,获得积分10
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907080
关于积分的说明 8340534
捐赠科研通 2577765
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633972