Vision Transformer: An Excellent Teacher for Guiding Small Networks in Remote Sensing Image Scene Classification

计算机科学 卷积神经网络 变压器 上下文图像分类 人工智能 人工神经网络 一般化 计算复杂性理论 分类器(UML) 深度学习 机器学习 模式识别(心理学) 图像(数学) 算法 数学 数学分析 电压 物理 量子力学
作者
Kejie Xu,Peifang Deng,Hong Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:73
标识
DOI:10.1109/tgrs.2022.3152566
摘要

Scene classification is an active research topic in the remote sensing community, and complex spatial layouts with various types of objects bring huge challenges to classification. Convolutional neural network (CNN)-based methods attempt to explore the global features by gradually expanding the receptive field, while long-range contextual information is ignored. Vision transformer (ViT) can extract contextual features, but the learning ability of local information is limited, and it has a large computational complexity simultaneously. In this article, an end-to-end method is exploited by employing ViT as an excellent teacher for guiding small networks (ET-GSNet) in the remote sensing image scene classification. In the ET-GSNet, ResNet18 is selected as the student model, which integrates the superiorities of the two models via knowledge distillation (KD), and the computational complexity does not increase. In the KD process, the ViT and ResNet18 are optimized together without independent pretraining, and the learning rate of teacher model gradually decreases until zero, while the weight coefficient of the KD loss module is doubled. Based on the above procedures, dark knowledge from the teacher model can be transferred to the student model more smoothly. Experimental results on the four public remote sensing datasets demonstrate that the proposed ET-GSNet method possesses the superior classification performance compared to some state-of-the-art (SOTA) methods. In addition, we evaluate the ET-GSNet on a fine-grained ship recognition dataset, and the results show that our method has good generalization for different tasks in terms of some metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叁金完成签到,获得积分10
5秒前
VitoLi完成签到,获得积分10
5秒前
6秒前
zhu97完成签到,获得积分10
6秒前
SYX完成签到,获得积分10
7秒前
隐形白亦完成签到,获得积分10
8秒前
8秒前
9秒前
李健应助小虾米采纳,获得10
9秒前
AN77777发布了新的文献求助10
10秒前
12秒前
13秒前
14秒前
雨落青烟起完成签到 ,获得积分10
17秒前
贝勒发布了新的文献求助10
19秒前
vovoking完成签到 ,获得积分10
19秒前
知性的梨愁完成签到,获得积分10
20秒前
yyyyyyw完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
ViVi完成签到 ,获得积分10
25秒前
26秒前
1111发布了新的文献求助10
26秒前
shasha完成签到,获得积分10
27秒前
小虾米发布了新的文献求助10
27秒前
fisher发布了新的文献求助20
27秒前
28秒前
Lychee完成签到,获得积分10
29秒前
樱满集发布了新的文献求助10
29秒前
1Yer6完成签到 ,获得积分10
29秒前
shasha发布了新的文献求助10
30秒前
123完成签到,获得积分10
31秒前
贝勒发布了新的文献求助10
32秒前
我是站长才怪应助wowser采纳,获得10
34秒前
乐乐应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
35秒前
Hello应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320227
关于积分的说明 10199137
捐赠科研通 3034929
什么是DOI,文献DOI怎么找? 1665282
邀请新用户注册赠送积分活动 796771
科研通“疑难数据库(出版商)”最低求助积分说明 757570