Structure information learning for neutral links in signed network embedding

计算机科学 中性网络 节点(物理) 图形 嵌入 有符号图 理论计算机科学 人工智能 社交网络(社会语言学) 机器学习 万维网 社会化媒体 人工神经网络 结构工程 工程类
作者
Shensheng Cai,Wei Shan,Mingli Zhang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102917-102917 被引量:2
标识
DOI:10.1016/j.ipm.2022.102917
摘要

Nowadays, signed network has become an important research topic because it can reflect more complex relationships in reality than traditional network, especially in social networks. However, most signed network methods that achieve excellent performance through structure information learning always neglect neutral links, which have unique information in social networks. At the same time, previous approach for neutral links cannot utilize the graph structure information, which has been proved to be useful in node embedding field. Thus, in this paper, we proposed the Signed Graph Convolutional Network with Neutral Links (NL-SGCN) to address the structure information learning problem of neutral links in signed network, which shed new insight on signed network embedding. In NL-SGCN, we learn two representations for each node in each layer from both inner character and outward attitude aspects and propagate their information by balance theory. Among these three types of links, information of neutral links will be limited propagated by the learned coefficient matrix. To verify the performance of the proposed model, we choose several classical datasets in this field to perform empirical experiment. The experimental result shows that NL-SGCN significantly outperforms the existing state-of-the-art baseline methods for link prediction in signed network with neutral links, which supports the efficacy of structure information learning in neutral links.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂大脑壳完成签到,获得积分10
刚刚
小九九完成签到,获得积分10
2秒前
Sindy完成签到,获得积分10
2秒前
杭紫雪完成签到,获得积分10
3秒前
CYJ完成签到,获得积分10
3秒前
优美的碧琴完成签到,获得积分10
5秒前
舒心的水卉完成签到,获得积分10
5秒前
Purplesky完成签到,获得积分10
5秒前
wzy完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
my完成签到,获得积分10
6秒前
liyuxuan完成签到,获得积分10
6秒前
hentai完成签到,获得积分10
6秒前
小许会更好完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
dong应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
英姑应助科研通管家采纳,获得10
9秒前
LJ发布了新的文献求助10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027