Structure information learning for neutral links in signed network embedding

计算机科学 中性网络 节点(物理) 图形 嵌入 有符号图 理论计算机科学 人工智能 社交网络(社会语言学) 机器学习 万维网 社会化媒体 人工神经网络 结构工程 工程类
作者
Shensheng Cai,Wei Shan,Mingli Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102917-102917 被引量:2
标识
DOI:10.1016/j.ipm.2022.102917
摘要

Nowadays, signed network has become an important research topic because it can reflect more complex relationships in reality than traditional network, especially in social networks. However, most signed network methods that achieve excellent performance through structure information learning always neglect neutral links, which have unique information in social networks. At the same time, previous approach for neutral links cannot utilize the graph structure information, which has been proved to be useful in node embedding field. Thus, in this paper, we proposed the Signed Graph Convolutional Network with Neutral Links (NL-SGCN) to address the structure information learning problem of neutral links in signed network, which shed new insight on signed network embedding. In NL-SGCN, we learn two representations for each node in each layer from both inner character and outward attitude aspects and propagate their information by balance theory. Among these three types of links, information of neutral links will be limited propagated by the learned coefficient matrix. To verify the performance of the proposed model, we choose several classical datasets in this field to perform empirical experiment. The experimental result shows that NL-SGCN significantly outperforms the existing state-of-the-art baseline methods for link prediction in signed network with neutral links, which supports the efficacy of structure information learning in neutral links.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助他吞吞吐吐采纳,获得10
1秒前
WTH完成签到,获得积分10
3秒前
panpanliumin完成签到,获得积分0
4秒前
瞳梦完成签到,获得积分10
4秒前
诸葛不亮_1完成签到,获得积分10
6秒前
lulu完成签到,获得积分20
7秒前
8秒前
圈儿完成签到,获得积分10
10秒前
realtimes发布了新的文献求助10
11秒前
12秒前
KKKKKkkk发布了新的文献求助10
13秒前
香蕉惜霜完成签到,获得积分10
14秒前
JY'完成签到,获得积分0
14秒前
zhx完成签到,获得积分10
15秒前
Neonoes完成签到,获得积分10
16秒前
余晖关注了科研通微信公众号
17秒前
17秒前
17秒前
星星完成签到,获得积分10
17秒前
18秒前
mwm621完成签到,获得积分10
19秒前
diyisudu完成签到 ,获得积分10
20秒前
dzy1317发布了新的文献求助10
21秒前
雨晴完成签到,获得积分10
22秒前
小张完成签到 ,获得积分10
22秒前
Ywffffff完成签到 ,获得积分10
23秒前
mwm621发布了新的文献求助10
25秒前
lyn完成签到,获得积分10
25秒前
26秒前
听海完成签到 ,获得积分10
27秒前
高xuewen完成签到,获得积分10
27秒前
27秒前
27秒前
赘婿应助毛毛采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
30秒前
30秒前
科目三应助科研通管家采纳,获得10
30秒前
30秒前
大个应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813457
关于积分的说明 7900425
捐赠科研通 2473012
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175