Structure information learning for neutral links in signed network embedding

计算机科学 中性网络 节点(物理) 图形 嵌入 有符号图 理论计算机科学 人工智能 社交网络(社会语言学) 机器学习 万维网 社会化媒体 人工神经网络 结构工程 工程类
作者
Shensheng Cai,Wei Shan,Mingli Zhang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102917-102917 被引量:2
标识
DOI:10.1016/j.ipm.2022.102917
摘要

Nowadays, signed network has become an important research topic because it can reflect more complex relationships in reality than traditional network, especially in social networks. However, most signed network methods that achieve excellent performance through structure information learning always neglect neutral links, which have unique information in social networks. At the same time, previous approach for neutral links cannot utilize the graph structure information, which has been proved to be useful in node embedding field. Thus, in this paper, we proposed the Signed Graph Convolutional Network with Neutral Links (NL-SGCN) to address the structure information learning problem of neutral links in signed network, which shed new insight on signed network embedding. In NL-SGCN, we learn two representations for each node in each layer from both inner character and outward attitude aspects and propagate their information by balance theory. Among these three types of links, information of neutral links will be limited propagated by the learned coefficient matrix. To verify the performance of the proposed model, we choose several classical datasets in this field to perform empirical experiment. The experimental result shows that NL-SGCN significantly outperforms the existing state-of-the-art baseline methods for link prediction in signed network with neutral links, which supports the efficacy of structure information learning in neutral links.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助莫处何安人采纳,获得10
刚刚
刚刚
七月完成签到 ,获得积分10
1秒前
2秒前
orixero应助明明采纳,获得10
3秒前
谜记发布了新的文献求助10
3秒前
finerain7完成签到,获得积分10
4秒前
4秒前
完美世界应助张可采纳,获得10
4秒前
cao发布了新的文献求助80
4秒前
唐飒发布了新的文献求助10
5秒前
ZY发布了新的文献求助10
5秒前
科研通AI5应助WFLLL采纳,获得10
6秒前
ff发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
陶渊明发布了新的文献求助10
8秒前
科研通AI5应助马倩茹采纳,获得10
9秒前
古月完成签到,获得积分10
11秒前
很多熏熏发布了新的文献求助10
13秒前
keroro发布了新的文献求助10
13秒前
小熵发布了新的文献求助10
13秒前
YilinHou完成签到,获得积分10
13秒前
科研通AI2S应助小雨采纳,获得10
14秒前
15秒前
xiajj发布了新的文献求助10
19秒前
CodeCraft应助廾匸采纳,获得10
20秒前
科研通AI5应助称心寒松采纳,获得10
20秒前
20秒前
keroro完成签到,获得积分10
20秒前
马倩茹发布了新的文献求助10
21秒前
21秒前
24秒前
WYF完成签到,获得积分20
25秒前
joruruo发布了新的文献求助30
25秒前
很多熏熏完成签到,获得积分10
26秒前
26秒前
李健应助难过以晴采纳,获得30
27秒前
加百莉发布了新的文献求助10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427