Applying empirical dynamic modeling to distinguish abiotic and biotic drivers of population fluctuations in sympatric fishes

生物 生态学 非生物成分 粘滞 人口 丰度(生态学) 种间竞争 渔业 社会学 人口学
作者
Ben A. Wasserman,Tanya L. Rogers,Stephan B. Munch,Eric P. Palkovacs
出处
期刊:Limnology and Oceanography [Wiley]
卷期号:67 (S1) 被引量:9
标识
DOI:10.1002/lno.12042
摘要

Abstract Fluctuations in the population abundances of interacting species are widespread. Such fluctuations could be a response to abiotic factors, biotic interactions, or a combination of the two. Correctly identifying the drivers is critical for effective population management. However, such effects are not always static in nature. Nonlinear relationships between abiotic factors and biotic interactions make it difficult to parse true effects. We used a type of nonlinear forecasting, empirical dynamic modeling, to investigate the context‐dependent species interaction between a common fish (three‐spine stickleback) and an endangered one (northern tidewater goby) in a fluctuating environment: a central California bar‐built estuary. We found little evidence for competition, instead both species largely responded independently to abiotic conditions. Stickleback were negatively affected by sandbar breaching. The strongest predictor of tidewater goby abundance was stickleback abundance; however, this effect was not a uniform negative effect of stickleback on goby as would be hypothesized under interspecific competition. The effect of stickleback on gobies was positive, though it was temporally restricted. Tidewater goby abundance in the summer was strongly positively correlated to stickleback abundance in the spring, which represents an offset in the reproductive and recruitment peaks in the two species that may help minimize competition and promote coexistence. Our study demonstrates how empirical dynamic modeling can be applied to understand drivers of population abundance in putative competitors and inform management for endangered species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西公主完成签到,获得积分10
1秒前
1秒前
6秒前
LL爱读书发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
liyi完成签到,获得积分10
8秒前
8秒前
xiao发布了新的文献求助10
10秒前
心海完成签到,获得积分10
12秒前
莫离完成签到,获得积分10
13秒前
13秒前
纯良可可豆完成签到,获得积分10
14秒前
赘婿应助xiao采纳,获得10
18秒前
淘淘完成签到,获得积分10
18秒前
思源应助cc采纳,获得10
19秒前
内向的小凡完成签到,获得积分0
19秒前
11111111111111完成签到,获得积分10
20秒前
桐桐应助纯良可可豆采纳,获得10
21秒前
木子26年要毕业完成签到 ,获得积分10
23秒前
mafei发布了新的文献求助10
23秒前
小熊饼干发布了新的文献求助10
24秒前
迪克大完成签到,获得积分10
25秒前
28秒前
文刀发布了新的文献求助20
29秒前
蜘蛛侠发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
32秒前
大个应助温暖寻雪采纳,获得10
32秒前
情怀应助兴奋迎彤采纳,获得10
32秒前
32秒前
蔡媛嫄发布了新的文献求助10
35秒前
LL爱读书完成签到,获得积分10
36秒前
Betty发布了新的文献求助10
37秒前
39秒前
慕青应助科研通管家采纳,获得10
42秒前
大模型应助科研通管家采纳,获得10
43秒前
Lucas应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
bkagyin应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
Orange应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534713
关于积分的说明 14146435
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441690
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410579