Applying empirical dynamic modeling to distinguish abiotic and biotic drivers of population fluctuations in sympatric fishes

生物 生态学 非生物成分 粘滞 人口 丰度(生态学) 种间竞争 渔业 社会学 人口学
作者
Ben A. Wasserman,Tanya L. Rogers,Stephan B. Munch,Eric P. Palkovacs
出处
期刊:Limnology and Oceanography [Wiley]
卷期号:67 (S1) 被引量:9
标识
DOI:10.1002/lno.12042
摘要

Abstract Fluctuations in the population abundances of interacting species are widespread. Such fluctuations could be a response to abiotic factors, biotic interactions, or a combination of the two. Correctly identifying the drivers is critical for effective population management. However, such effects are not always static in nature. Nonlinear relationships between abiotic factors and biotic interactions make it difficult to parse true effects. We used a type of nonlinear forecasting, empirical dynamic modeling, to investigate the context‐dependent species interaction between a common fish (three‐spine stickleback) and an endangered one (northern tidewater goby) in a fluctuating environment: a central California bar‐built estuary. We found little evidence for competition, instead both species largely responded independently to abiotic conditions. Stickleback were negatively affected by sandbar breaching. The strongest predictor of tidewater goby abundance was stickleback abundance; however, this effect was not a uniform negative effect of stickleback on goby as would be hypothesized under interspecific competition. The effect of stickleback on gobies was positive, though it was temporally restricted. Tidewater goby abundance in the summer was strongly positively correlated to stickleback abundance in the spring, which represents an offset in the reproductive and recruitment peaks in the two species that may help minimize competition and promote coexistence. Our study demonstrates how empirical dynamic modeling can be applied to understand drivers of population abundance in putative competitors and inform management for endangered species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
孤梦落雨完成签到,获得积分10
4秒前
basepair完成签到,获得积分10
5秒前
6秒前
包子完成签到,获得积分10
8秒前
9秒前
9秒前
13秒前
忧郁若菱发布了新的文献求助10
13秒前
caicai完成签到,获得积分10
13秒前
MQY完成签到,获得积分10
14秒前
熊大完成签到,获得积分10
14秒前
科研通AI2S应助xx采纳,获得10
14秒前
15秒前
浮生完成签到 ,获得积分10
18秒前
天天开心完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
EMMA发布了新的文献求助10
24秒前
lynn完成签到,获得积分20
25秒前
Cozy完成签到,获得积分10
25秒前
不配.应助蔺亦丝采纳,获得20
26秒前
27秒前
美满寄松发布了新的文献求助10
27秒前
包子发布了新的文献求助10
27秒前
28秒前
科研通AI2S应助阿花阿花采纳,获得10
32秒前
NexusExplorer应助欧阳静芙采纳,获得10
33秒前
忧郁若菱完成签到,获得积分20
33秒前
文艺书雪发布了新的文献求助10
34秒前
smile完成签到,获得积分10
34秒前
害羞的裘完成签到 ,获得积分10
34秒前
MQY发布了新的文献求助10
35秒前
喜东东完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393