已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review

电池(电) 材料科学 相变材料 锂(药物) 工艺工程 商业化 瓶颈 升级 计算机科学 功率密度 热失控 锂离子电池 汽车工程 功率(物理) 工程物理 核工程 工程类 相变 热力学 嵌入式系统 物理 法学 政治学 内分泌学 操作系统 医学
作者
Jiangyun Zhang,Dan Shao,Liqin Jiang,Guoqing Zhang,Hongwei Wu,Rodney Day,Wenzhao Jiang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:159: 112207-112207 被引量:154
标识
DOI:10.1016/j.rser.2022.112207
摘要

Power lithium-ion batteries are widely utilized in electric vehicles (EVs) and hybrid electric vehicles (HEVs) for their high energy densities and long service-life. However, thermal safety problems mainly resulting from thermal runaway (TR) must be solved. In general, temperature directly influences the performance of lithium-ion batteries. Hence, an efficient thermal management system is very necessary for battery modules/packs. One particular approach, phase change material (PCM)-based cooling, has exhibited promising applicability due to prominent controlling-temperature and stretching-temperature capacities. However, poor thermal conductivity performance, as the main technical bottleneck, is limiting the practical application. Nevertheless, only promoting the thermal conductivity is far from enough considering the practical application in EVs/HEVs. To fix these flaws, firstly, the heat generation/transfer mechanisms of lithium-ion power batteries were macro- and microscopically reviewed. Following that, the thermal conductivity, structural stability, and flame retardancy of PCM are thoroughly discussed, to which solutions to the aforementioned performances are systematically reviewed. In addition, battery thermal management system (BTMS) employing PCM is illustrated and compared. Eventually, the existing challenges and future directions of PCM-based BTMS are discussed. In summary, this review presents effective approaches to upgrade the PCM performances for high-density lithium-ion BTMS. These strategies furtherly accelerate the commercialization process of PCM BTMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万物安生完成签到,获得积分10
1秒前
Ephemeral完成签到 ,获得积分10
1秒前
wave关注了科研通微信公众号
1秒前
落忆完成签到 ,获得积分10
3秒前
5秒前
11秒前
11秒前
cxwong发布了新的文献求助10
12秒前
Lesterem完成签到 ,获得积分10
13秒前
dong完成签到,获得积分10
15秒前
17秒前
wave发布了新的文献求助10
18秒前
dong发布了新的文献求助10
19秒前
田様应助cxwong采纳,获得10
21秒前
乐乐乐乐乐乐完成签到,获得积分10
21秒前
Mason完成签到,获得积分10
22秒前
23秒前
m1nt完成签到,获得积分10
23秒前
英姑应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
24秒前
耿宇航完成签到 ,获得积分10
25秒前
25秒前
情怀应助飞飞飞采纳,获得10
26秒前
传奇3应助dong采纳,获得10
27秒前
HY发布了新的文献求助10
27秒前
斯文绿凝发布了新的文献求助10
28秒前
雨林完成签到 ,获得积分10
29秒前
夜风发布了新的文献求助10
31秒前
YBR完成签到 ,获得积分10
31秒前
31秒前
ellie0125完成签到 ,获得积分10
31秒前
恶恶么v完成签到,获得积分10
33秒前
飞飞飞发布了新的文献求助10
36秒前
斯文绿凝完成签到,获得积分10
37秒前
38秒前
40秒前
火星完成签到 ,获得积分10
40秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802