控制理论(社会学)
弹道
终端滑动模式
趋同(经济学)
滑模控制
人工神经网络
奇点
计算机科学
跟踪(教育)
非线性系统
终端(电信)
可逆矩阵
人工智能
数学
控制(管理)
量子力学
电信
物理
数学分析
经济增长
经济
纯数学
教育学
心理学
天文
作者
Yizhuo Sun,Yabin Gao,Yue Zhao,Zhuang Liu,Jiahui Wang,Jiyuan Kuang,Fei Yan,Jianxing Liu
标识
DOI:10.1109/tie.2022.3161810
摘要
This article investigates the predefined time trajectory tracking control of uncertain nonlinear robotic systems. A radial basis function neural network (RBFNN) is used to estimate uncertainties in the robotic system dynamics. To avoid the singularity of terminal sliding-mode control (TSMC), a modified sliding variable is adopted. In order to realize that the tracking errors can converge to a small neighborhood of the origin in predefined time , within which the maximum convergence time can be adjusted by explicit parameters in advance, a nonsingular TSMC based on the RBFNN is proposed. Experiments on a ROKAE platform demonstrate the effectiveness and advantage of the proposed control method.
科研通智能强力驱动
Strongly Powered by AbleSci AI