亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing

计算机科学 上传 差别隐私 边缘计算 GSM演进的增强数据速率 边缘设备 软件部署 计算机安全 信息隐私 分布式计算 人工智能 数据挖掘 云计算 操作系统
作者
Jun Zhou,Nan Wu,Yisong Wang,Shouzhen Gu,Zhenfu Cao,Xiaolei Dong,Kim‐Kwang Raymond Choo
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tdsc.2022.3168556
摘要

Federated learning is increasingly popular, as it allows us to circumvent challenges due to data islands, by training a global model using data from one or more data owners/sources. However, in edge computing, resource-constrained end devices are vulnerable to be compromised and abused to facilitate poisoning attacks. Privacy-preserving is another important property to consider when dealing with sensitive user data on end devices. Most existing approaches only consider either defending against poisoning attacks or supporting privacy, but not both properties simultaneously. In this paper, we propose a differentially private federated learning model against poisoning attacks, designed for edge computing deployment. First, we design a weight-based algorithm to perform anomaly detection on the parameters uploaded by end devices in edge nodes, which improves detection rate using only small-size validation datasets and minimizes the communication cost. Then, differential privacy technology is leveraged to protect the privacy of both data and model in an edge computing setting. We also evaluate and compare the detection performance in the presence of random and customized malicious end devices with the state-of-the-art, in terms of attack resiliency, communication and computation costs. Experimental results demonstrate that our scheme can achieve an optimal tradeoff between security, efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄sir发布了新的文献求助30
1秒前
插座发布了新的文献求助10
2秒前
sqb发布了新的文献求助10
3秒前
从容芮完成签到,获得积分0
3秒前
Sven_M完成签到,获得积分10
4秒前
数学情缘发布了新的文献求助10
6秒前
Lucas应助黄sir采纳,获得30
7秒前
烟花应助黄sir采纳,获得30
7秒前
酷波er应助puppy采纳,获得10
7秒前
zx完成签到,获得积分10
7秒前
旺仔同学完成签到,获得积分10
8秒前
阳光的紊应助zp采纳,获得30
9秒前
zlt完成签到,获得积分10
10秒前
sqb完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
岸在海的深处完成签到 ,获得积分10
17秒前
Zhang1867完成签到,获得积分10
17秒前
虚心柠檬完成签到 ,获得积分10
28秒前
冷酷哈密瓜完成签到,获得积分10
29秒前
插座完成签到 ,获得积分10
34秒前
从容成危完成签到,获得积分10
39秒前
铁板棉花糖完成签到,获得积分10
46秒前
多多完成签到,获得积分10
47秒前
49秒前
是多多呀完成签到 ,获得积分10
51秒前
51秒前
zp完成签到,获得积分10
53秒前
56秒前
58秒前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
黄sir发布了新的文献求助30
1分钟前
WEILAI完成签到 ,获得积分10
1分钟前
从容的雪碧完成签到 ,获得积分10
1分钟前
优美的谷完成签到,获得积分10
1分钟前
酷波er应助恩佐采纳,获得10
1分钟前
1分钟前
白樱恋曲完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506229
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789582
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056