亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing

计算机科学 上传 差别隐私 边缘计算 GSM演进的增强数据速率 边缘设备 软件部署 计算机安全 信息隐私 分布式计算 人工智能 数据挖掘 云计算 操作系统
作者
Jun Zhou,Nan Wu,Yisong Wang,Shouzhen Gu,Zhenfu Cao,Xiaolei Dong,Kim‐Kwang Raymond Choo
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tdsc.2022.3168556
摘要

Federated learning is increasingly popular, as it allows us to circumvent challenges due to data islands, by training a global model using data from one or more data owners/sources. However, in edge computing, resource-constrained end devices are vulnerable to be compromised and abused to facilitate poisoning attacks. Privacy-preserving is another important property to consider when dealing with sensitive user data on end devices. Most existing approaches only consider either defending against poisoning attacks or supporting privacy, but not both properties simultaneously. In this paper, we propose a differentially private federated learning model against poisoning attacks, designed for edge computing deployment. First, we design a weight-based algorithm to perform anomaly detection on the parameters uploaded by end devices in edge nodes, which improves detection rate using only small-size validation datasets and minimizes the communication cost. Then, differential privacy technology is leveraged to protect the privacy of both data and model in an edge computing setting. We also evaluate and compare the detection performance in the presence of random and customized malicious end devices with the state-of-the-art, in terms of attack resiliency, communication and computation costs. Experimental results demonstrate that our scheme can achieve an optimal tradeoff between security, efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助采薇采纳,获得10
5秒前
奋斗灵波完成签到,获得积分10
16秒前
情怀应助奋斗灵波采纳,获得10
46秒前
1分钟前
采薇发布了新的文献求助10
1分钟前
完美世界应助采薇采纳,获得10
1分钟前
1分钟前
1分钟前
Kevin完成签到,获得积分10
1分钟前
蛙蛙的呱呱完成签到,获得积分10
1分钟前
2分钟前
2分钟前
wanci应助Blessing采纳,获得10
3分钟前
FashionBoy应助poppylee采纳,获得10
3分钟前
3分钟前
poppylee发布了新的文献求助10
3分钟前
4分钟前
Blessing完成签到,获得积分10
4分钟前
Blessing发布了新的文献求助10
4分钟前
wanci应助chiyudoubao采纳,获得10
4分钟前
4分钟前
采薇发布了新的文献求助10
4分钟前
深情安青应助采薇采纳,获得10
4分钟前
4分钟前
4分钟前
震动的听枫完成签到,获得积分10
4分钟前
5分钟前
涂山发布了新的文献求助10
5分钟前
ZK发布了新的文献求助10
5分钟前
cctv18应助涂山采纳,获得10
5分钟前
chiyudoubao发布了新的文献求助10
6分钟前
科研通AI2S应助GdYOUNGRAY采纳,获得10
6分钟前
6分钟前
采薇发布了新的文献求助10
6分钟前
6分钟前
大马猴发布了新的文献求助10
7分钟前
7分钟前
光亮曼云发布了新的文献求助10
7分钟前
彭于晏应助光亮曼云采纳,获得10
7分钟前
CodeCraft应助大马猴采纳,获得10
7分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244737
求助须知:如何正确求助?哪些是违规求助? 2888396
关于积分的说明 8252827
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269