亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing

计算机科学 上传 差别隐私 边缘计算 GSM演进的增强数据速率 边缘设备 软件部署 计算机安全 信息隐私 分布式计算 人工智能 数据挖掘 云计算 操作系统
作者
Jun Zhou,Nan Wu,Yisong Wang,Shouzhen Gu,Zhenfu Cao,Xiaolei Dong,Kim‐Kwang Raymond Choo
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tdsc.2022.3168556
摘要

Federated learning is increasingly popular, as it allows us to circumvent challenges due to data islands, by training a global model using data from one or more data owners/sources. However, in edge computing, resource-constrained end devices are vulnerable to be compromised and abused to facilitate poisoning attacks. Privacy-preserving is another important property to consider when dealing with sensitive user data on end devices. Most existing approaches only consider either defending against poisoning attacks or supporting privacy, but not both properties simultaneously. In this paper, we propose a differentially private federated learning model against poisoning attacks, designed for edge computing deployment. First, we design a weight-based algorithm to perform anomaly detection on the parameters uploaded by end devices in edge nodes, which improves detection rate using only small-size validation datasets and minimizes the communication cost. Then, differential privacy technology is leveraged to protect the privacy of both data and model in an edge computing setting. We also evaluate and compare the detection performance in the presence of random and customized malicious end devices with the state-of-the-art, in terms of attack resiliency, communication and computation costs. Experimental results demonstrate that our scheme can achieve an optimal tradeoff between security, efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
6秒前
7秒前
sissiarno应助科研通管家采纳,获得30
7秒前
10秒前
Owen应助搞怪的沛菡采纳,获得10
13秒前
123456发布了新的文献求助10
15秒前
17秒前
18秒前
21秒前
我爱科研发布了新的文献求助10
22秒前
Rayyu_0905给Rayyu_0905的求助进行了留言
24秒前
25秒前
青争发布了新的文献求助10
27秒前
27秒前
科研通AI5应助我爱科研采纳,获得10
27秒前
lixiaorui发布了新的文献求助10
29秒前
30秒前
菠萝发布了新的文献求助10
33秒前
35秒前
青争完成签到,获得积分10
40秒前
嘻嘻哈哈发布了新的文献求助80
42秒前
48秒前
慕青应助oou采纳,获得10
48秒前
49秒前
Dr.Leon发布了新的文献求助10
54秒前
lyy完成签到,获得积分10
1分钟前
Dr.Leon完成签到,获得积分10
1分钟前
辉哥完成签到,获得积分10
1分钟前
我是老大应助辉哥采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
学术学徒完成签到,获得积分10
1分钟前
Ferry完成签到,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助90
1分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
sissiarno应助科研通管家采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254222
求助须知:如何正确求助?哪些是违规求助? 4417220
关于积分的说明 13751098
捐赠科研通 4289847
什么是DOI,文献DOI怎么找? 2353783
邀请新用户注册赠送积分活动 1350470
关于科研通互助平台的介绍 1310568