A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing

计算机科学 上传 差别隐私 边缘计算 GSM演进的增强数据速率 边缘设备 软件部署 计算机安全 信息隐私 分布式计算 人工智能 数据挖掘 云计算 操作系统
作者
Jun Zhou,Nan Wu,Yisong Wang,Shouzhen Gu,Zhenfu Cao,Xiaolei Dong,Kim‐Kwang Raymond Choo
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tdsc.2022.3168556
摘要

Federated learning is increasingly popular, as it allows us to circumvent challenges due to data islands, by training a global model using data from one or more data owners/sources. However, in edge computing, resource-constrained end devices are vulnerable to be compromised and abused to facilitate poisoning attacks. Privacy-preserving is another important property to consider when dealing with sensitive user data on end devices. Most existing approaches only consider either defending against poisoning attacks or supporting privacy, but not both properties simultaneously. In this paper, we propose a differentially private federated learning model against poisoning attacks, designed for edge computing deployment. First, we design a weight-based algorithm to perform anomaly detection on the parameters uploaded by end devices in edge nodes, which improves detection rate using only small-size validation datasets and minimizes the communication cost. Then, differential privacy technology is leveraged to protect the privacy of both data and model in an edge computing setting. We also evaluate and compare the detection performance in the presence of random and customized malicious end devices with the state-of-the-art, in terms of attack resiliency, communication and computation costs. Experimental results demonstrate that our scheme can achieve an optimal tradeoff between security, efficiency and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sisi完成签到,获得积分10
刚刚
lyy发布了新的文献求助10
刚刚
时冬冬应助daiduo采纳,获得20
1秒前
小徐801完成签到,获得积分10
1秒前
yszyy23完成签到,获得积分10
1秒前
善学以致用应助yangshu采纳,获得10
1秒前
自信的寄凡完成签到 ,获得积分20
2秒前
朴素臻完成签到,获得积分10
2秒前
可爱的小树苗完成签到,获得积分10
2秒前
3秒前
yeguo完成签到,获得积分10
3秒前
kenny完成签到,获得积分10
3秒前
轻舟空渡完成签到,获得积分10
3秒前
Mandy发布了新的文献求助10
3秒前
叶远望完成签到,获得积分10
3秒前
Daisy发布了新的文献求助10
4秒前
夕荀发布了新的文献求助10
4秒前
Min完成签到,获得积分10
5秒前
楠阿楠完成签到 ,获得积分10
5秒前
子车茗应助哇哈哈哈哈哈采纳,获得30
5秒前
5秒前
头哥应助MiManchi采纳,获得10
6秒前
李健应助zz采纳,获得10
6秒前
6秒前
6秒前
重楼远志完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
Young应助时间采纳,获得10
7秒前
7秒前
小巧吐司完成签到,获得积分10
7秒前
8秒前
IceShock完成签到,获得积分10
8秒前
白蒲桃完成签到 ,获得积分10
8秒前
炙热面包完成签到,获得积分20
8秒前
大胆的如凡完成签到,获得积分10
9秒前
10秒前
你怎么睡得着觉完成签到,获得积分10
10秒前
可爱的函函应助Mrsummer采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005