控制理论(社会学)
反推
执行机构
非线性系统
控制器(灌溉)
Lyapunov稳定性
自适应控制
计算机科学
李雅普诺夫函数
理论(学习稳定性)
跟踪误差
区间(图论)
数学
控制(管理)
人工智能
物理
机器学习
组合数学
生物
量子力学
农学
作者
Yu Mei,Jing Wang,Ju H. Park,Kaibo Shi,Hao Shen
出处
期刊:Nonlinear Dynamics
[Springer Science+Business Media]
日期:2022-01-06
卷期号:107 (4): 3629-3640
被引量:29
标识
DOI:10.1007/s11071-021-07171-y
摘要
The adaptive fixed-time control problem for nonlinear systems with time-varying actuator faults is investigated in this paper. A novel adaptive fixed-time controller is designed via combining the Lyapunov stability theory with the backstepping method. It can be adapted to both system uncertainties and unknown actuator faults. Compared with the existing fault-tolerant control schemes subject to actuator faults, the adaptive fixed-time neural networks control scheme can make sure that the tracking error is convergent in a small neighborhood of the origin within a fixed-time interval, and it does not depend on the original states of the system and actuator faults. In light of the control scheme proposed in this paper, the fixed-time stability of the closed-loop system can be guaranteed by theoretical analysis, and a numerical example is provided to verify the effectiveness of obtained theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI