Network Analysis of Persistent Somatic Symptoms in Two Clinical Patient Samples

病因学 干预(咨询) 集合(抽象数据类型) 心理学 医学 临床心理学 精神科 计算机科学 程序设计语言
作者
Katharina Senger,Jens Heider,Maria Kleinstäuber,Matthias Sehlbrede,Michael Witthöft,Annette Schröder
出处
期刊:Psychosomatic Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:84 (1): 74-85 被引量:10
标识
DOI:10.1097/psy.0000000000000999
摘要

Previous attempts to group persistent somatic symptoms (PSSs) with factor-analytic approaches have obtained heterogeneous results. An alternative approach that seems to be more suitable is the network theory. Compared with factor analysis, which focuses on the underlying factor of symptoms, network analysis focuses on the dynamic relationships and interactions among different symptoms. The main aim of this study is to apply the network approach to examine the heterogeneous structure of PSS within two clinical samples.The first data set consisted of n = 254 outpatients who were part of a multicenter study. The second data set included n = 574 inpatients, both with somatoform disorders. Somatic symptom severity was assessed with the Screening of Somatoform Disorder (SOMS-7T).Results indicate that there are five main symptom groups that were found in both samples: neurological, gastrointestinal, urogenital, cardiovascular, and musculoskeletal symptoms. Although patterns of symptoms with high connection to each other look quite similar in both networks, the order of the most central symptoms (e.g., symptoms with a high connection to other symptoms in the network) differs.This work is the first to estimate the structure of PSS using network analysis. A next step could be first to replicate our findings before translating them into clinical practice. Second, results may be useful for generating hypotheses to be tested in future studies, and the results open new opportunities for a better understanding for etiology, prevention, and intervention research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
子暮发布了新的文献求助20
2秒前
科研通AI6应助风轩轩采纳,获得150
2秒前
2秒前
2秒前
科研通AI6应助chen采纳,获得10
2秒前
ww发布了新的文献求助10
3秒前
把握有度发布了新的文献求助10
4秒前
Irene完成签到,获得积分20
5秒前
子车茗应助汤圆采纳,获得10
5秒前
linjiebro完成签到,获得积分10
6秒前
Cc发布了新的文献求助10
6秒前
江生完成签到,获得积分10
7秒前
adi发布了新的文献求助10
7秒前
与非完成签到,获得积分10
7秒前
7秒前
猪猪hero应助bubble采纳,获得10
9秒前
9秒前
小小油应助arizaki7采纳,获得10
9秒前
小小油应助arizaki7采纳,获得10
9秒前
浪子应助arizaki7采纳,获得10
9秒前
stefan完成签到,获得积分10
10秒前
www完成签到,获得积分10
11秒前
11秒前
懒洋洋发布了新的文献求助20
11秒前
Akim应助绛橘色的日落采纳,获得10
11秒前
想美事发布了新的文献求助10
12秒前
科研通AI6应助张瑜采纳,获得10
12秒前
WZT完成签到,获得积分10
12秒前
霖尤完成签到,获得积分20
13秒前
14秒前
14秒前
HCT发布了新的文献求助10
14秒前
14秒前
天真的夜山完成签到,获得积分10
14秒前
han完成签到,获得积分10
16秒前
青柠七号站完成签到,获得积分10
16秒前
石烟祝完成签到,获得积分10
16秒前
略略完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836