Network Analysis of Persistent Somatic Symptoms in Two Clinical Patient Samples

病因学 干预(咨询) 集合(抽象数据类型) 心理学 医学 临床心理学 精神科 计算机科学 程序设计语言
作者
Katharina Senger,Jens Heider,Maria Kleinstäuber,Matthias Sehlbrede,Michael Witthöft,Annette Schröder
出处
期刊:Psychosomatic Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:84 (1): 74-85 被引量:10
标识
DOI:10.1097/psy.0000000000000999
摘要

Previous attempts to group persistent somatic symptoms (PSSs) with factor-analytic approaches have obtained heterogeneous results. An alternative approach that seems to be more suitable is the network theory. Compared with factor analysis, which focuses on the underlying factor of symptoms, network analysis focuses on the dynamic relationships and interactions among different symptoms. The main aim of this study is to apply the network approach to examine the heterogeneous structure of PSS within two clinical samples.The first data set consisted of n = 254 outpatients who were part of a multicenter study. The second data set included n = 574 inpatients, both with somatoform disorders. Somatic symptom severity was assessed with the Screening of Somatoform Disorder (SOMS-7T).Results indicate that there are five main symptom groups that were found in both samples: neurological, gastrointestinal, urogenital, cardiovascular, and musculoskeletal symptoms. Although patterns of symptoms with high connection to each other look quite similar in both networks, the order of the most central symptoms (e.g., symptoms with a high connection to other symptoms in the network) differs.This work is the first to estimate the structure of PSS using network analysis. A next step could be first to replicate our findings before translating them into clinical practice. Second, results may be useful for generating hypotheses to be tested in future studies, and the results open new opportunities for a better understanding for etiology, prevention, and intervention research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ymj发布了新的文献求助10
刚刚
JamesPei应助yyf采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
enoot发布了新的文献求助10
1秒前
1秒前
盘尼西林完成签到 ,获得积分10
1秒前
1秒前
2秒前
liutaili完成签到,获得积分10
2秒前
PXY完成签到,获得积分10
2秒前
3秒前
DrLiu发布了新的文献求助10
3秒前
WxChen发布了新的文献求助10
3秒前
小马甲应助仄兀采纳,获得10
3秒前
YAN关闭了YAN文献求助
3秒前
杏花饼发布了新的文献求助10
3秒前
筱星完成签到,获得积分10
4秒前
aaaaa发布了新的文献求助10
4秒前
宇文宛菡发布了新的文献求助10
4秒前
jacky完成签到,获得积分10
4秒前
司徒迎曼发布了新的文献求助10
4秒前
4秒前
启航完成签到,获得积分10
4秒前
5秒前
笋蒸鱼完成签到,获得积分10
5秒前
liutaili发布了新的文献求助10
5秒前
5秒前
睡到人间煮饭时完成签到,获得积分10
5秒前
6秒前
清澈水眸完成签到 ,获得积分10
6秒前
圈圈发布了新的文献求助10
6秒前
zhanlonglsj关注了科研通微信公众号
6秒前
缥缈的万天完成签到 ,获得积分10
7秒前
木禾火发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740