亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature Selection Considering Multiple Correlations Based on Soft Fuzzy Dominance Rough Sets for Monotonic Classification

粗集 特征选择 人工智能 数据挖掘 模式识别(心理学) 计算机科学 稳健性(进化) 模糊逻辑 基于优势度的粗糙集方法 模糊集 机器学习 单调函数 数学 化学 数学分析 基因 生物化学
作者
Binbin Sang,Hongmei Chen,Lei Yang,Jihong Wan,Tianrui Li,Weihua Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (12): 5181-5195 被引量:15
标识
DOI:10.1109/tfuzz.2022.3169625
摘要

Monotonic classification is a common task in the field of multicriteria decision-making, in which features and decision obey a monotonic constraint. The dominance-based rough set theory is an important mathematical tool for knowledge acquisition in monotonic classification tasks (MCTs). However, existing dominance-based rough set models are very sensitive to noise information, and only a misclassified sample will lead to large errors in acquiring knowledge. This unstable phenomenon does not meet the requirements of practical applications. On the other hand, feature selection is supposedly an effective dimensionality reduction approach for classification tasks. In the real world, feature combinations with multiple correlations can often provide important classification information, where the multiple correlations include redundancy, complementarity, and interaction between features. To the best of our knowledge, most of the existing feature selection methods for MCTs only consider the relevance between features and decision, while ignoring the multiple correlations. To overcome these two drawbacks, in this article, we propose a robust fuzzy dominance rough set model, and develop a feature selection method that considers multiple correlations based on the robust model for MCTs. First, a soft fuzzy dominance rough set (SFDRS) with robustness is proposed. Second, a feature evaluation index considering multiple correlations is presented. Finally, a feature selection algorithm based on SFDRS is designed to select an optimal feature subset. Extensive experiments are conducted on 12 public datasets, and the results show that the SFDRS model has good robustness and the proposed feature selection algorithm has excellent classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
9秒前
11秒前
科研通AI2S应助玄之又玄采纳,获得10
16秒前
风趣煎蛋发布了新的文献求助10
17秒前
天天快乐应助MOD采纳,获得10
21秒前
29秒前
feifei发布了新的文献求助10
31秒前
57秒前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
VERITAS发布了新的文献求助10
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
复杂的夜香完成签到 ,获得积分10
1分钟前
xpqiu完成签到,获得积分10
2分钟前
orixero应助libob采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
佳佳发布了新的文献求助10
2分钟前
2分钟前
小鹿完成签到,获得积分10
2分钟前
风趣煎蛋发布了新的文献求助10
2分钟前
2分钟前
风趣煎蛋完成签到,获得积分10
2分钟前
小鹿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
3分钟前
libob发布了新的文献求助10
3分钟前
3分钟前
思源应助zsp采纳,获得30
3分钟前
4分钟前
领导范儿应助556采纳,获得10
4分钟前
Persist6578完成签到 ,获得积分10
4分钟前
半城微凉应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214