BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources

定量磁化率图 人工智能 计算机科学 深度学习 模式识别(心理学) 生物医学工程 计算机视觉 磁共振成像 医学 放射科
作者
Xuanyu Zhu,Yang Gao,Feng Liu,‪Stuart Crozier‬,Hongfu Sun
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier BV]
卷期号:33 (4): 578-590 被引量:5
标识
DOI:10.1016/j.zemedi.2022.08.001
摘要

Background field removal (BFR) is a critical step required for successful quantitative susceptibility mapping (QSM). However, eliminating the background field in brains containing significant susceptibility sources, such as intracranial hemorrhages, is challenging due to the relatively large scale of the field induced by these pathological susceptibility sources.This study proposes a new deep learning-based method, BFRnet, to remove the background field in healthy and hemorrhagic subjects. The network is built with the dual-frequency octave convolutions on the U-net architecture, trained with synthetic field maps containing significant susceptibility sources. The BFRnet method is compared with three conventional BFR methods and one previous deep learning method using simulated and in vivo brains from 4 healthy and 2 hemorrhagic subjects. Robustness against acquisition field-of-view (FOV) orientation and brain masking are also investigated.For both simulation and in vivo experiments, BFRnet led to the best visually appealing results in the local field and QSM results with the minimum contrast loss and the most accurate hemorrhage susceptibility measurements among all five methods. In addition, BFRnet produced the most consistent local field and susceptibility maps between different sizes of brain masks, while conventional methods depend drastically on precise brain extraction and further brain edge erosions. It is also observed that BFRnet performed the best among all BFR methods for acquisition FOVs oblique to the main magnetic field.The proposed BFRnet improved the accuracy of local field reconstruction in the hemorrhagic subjects compared with conventional BFR algorithms. The BFRnet method was effective for acquisitions of tilted orientations and retained whole brains without edge erosion as often required by traditional BFR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocobear完成签到 ,获得积分10
1秒前
mochalv123完成签到 ,获得积分10
2秒前
科研通AI5应助genova采纳,获得10
3秒前
追寻完成签到 ,获得积分10
5秒前
shann完成签到,获得积分10
7秒前
jiaying完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
even完成签到 ,获得积分0
14秒前
闪闪翼发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
bookgg完成签到 ,获得积分10
20秒前
海鑫王完成签到,获得积分20
21秒前
之后再说咯完成签到 ,获得积分10
22秒前
22秒前
少女徐必成完成签到 ,获得积分10
27秒前
手握灵珠常奋笔完成签到,获得积分10
28秒前
细心盼晴发布了新的文献求助10
29秒前
肖果完成签到 ,获得积分10
31秒前
sora完成签到,获得积分10
34秒前
闪闪翼完成签到,获得积分10
37秒前
38秒前
阿达完成签到 ,获得积分10
40秒前
苗条世德完成签到,获得积分10
41秒前
我睡觉的时候不困完成签到 ,获得积分10
42秒前
43秒前
genova发布了新的文献求助10
44秒前
56秒前
qyzhu完成签到,获得积分10
58秒前
ty完成签到 ,获得积分10
1分钟前
你的样子发布了新的文献求助10
1分钟前
大个应助林厌寻采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fjmelite完成签到 ,获得积分10
1分钟前
1分钟前
kkk完成签到 ,获得积分10
1分钟前
Aixia发布了新的文献求助30
1分钟前
苹果柜子完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910675
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999471
捐赠科研通 3953927
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845