亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources

定量磁化率图 人工智能 计算机科学 深度学习 模式识别(心理学) 生物医学工程 计算机视觉 磁共振成像 医学 放射科
作者
Xuanyu Zhu,Yang Gao,Feng Liu,‪Stuart Crozier‬,Hongfu Sun
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
卷期号:33 (4): 578-590 被引量:5
标识
DOI:10.1016/j.zemedi.2022.08.001
摘要

Background field removal (BFR) is a critical step required for successful quantitative susceptibility mapping (QSM). However, eliminating the background field in brains containing significant susceptibility sources, such as intracranial hemorrhages, is challenging due to the relatively large scale of the field induced by these pathological susceptibility sources.This study proposes a new deep learning-based method, BFRnet, to remove the background field in healthy and hemorrhagic subjects. The network is built with the dual-frequency octave convolutions on the U-net architecture, trained with synthetic field maps containing significant susceptibility sources. The BFRnet method is compared with three conventional BFR methods and one previous deep learning method using simulated and in vivo brains from 4 healthy and 2 hemorrhagic subjects. Robustness against acquisition field-of-view (FOV) orientation and brain masking are also investigated.For both simulation and in vivo experiments, BFRnet led to the best visually appealing results in the local field and QSM results with the minimum contrast loss and the most accurate hemorrhage susceptibility measurements among all five methods. In addition, BFRnet produced the most consistent local field and susceptibility maps between different sizes of brain masks, while conventional methods depend drastically on precise brain extraction and further brain edge erosions. It is also observed that BFRnet performed the best among all BFR methods for acquisition FOVs oblique to the main magnetic field.The proposed BFRnet improved the accuracy of local field reconstruction in the hemorrhagic subjects compared with conventional BFR algorithms. The BFRnet method was effective for acquisitions of tilted orientations and retained whole brains without edge erosion as often required by traditional BFR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜发带完成签到 ,获得积分10
13秒前
英姑应助yangon采纳,获得10
13秒前
涂楚捷完成签到,获得积分10
16秒前
充电宝应助korchid采纳,获得10
33秒前
爆米花应助llx采纳,获得10
35秒前
kk完成签到,获得积分10
43秒前
gy完成签到,获得积分10
44秒前
48秒前
852应助跳跳糖采纳,获得10
1分钟前
GlockieZhao完成签到,获得积分10
1分钟前
1分钟前
1分钟前
祖宁完成签到,获得积分10
1分钟前
1分钟前
怕孤单的绝义完成签到,获得积分10
1分钟前
1分钟前
牛犊发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
情怀应助牛犊采纳,获得10
1分钟前
1分钟前
佳佳完成签到,获得积分10
1分钟前
1分钟前
黄安琪发布了新的文献求助10
1分钟前
风趣的从梦完成签到,获得积分10
1分钟前
1分钟前
llx发布了新的文献求助10
2分钟前
黄安琪完成签到,获得积分20
2分钟前
千里共婵娟应助nine采纳,获得10
2分钟前
梦鱼完成签到,获得积分10
2分钟前
衔婵又完成签到 ,获得积分10
2分钟前
3分钟前
wao完成签到 ,获得积分10
3分钟前
慕09完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126059
求助须知:如何正确求助?哪些是违规求助? 2776259
关于积分的说明 7729655
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292201
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392