BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources

定量磁化率图 人工智能 计算机科学 深度学习 模式识别(心理学) 生物医学工程 计算机视觉 磁共振成像 医学 放射科
作者
Xuanyu Zhu,Yang Gao,Feng Liu,‪Stuart Crozier‬,Hongfu Sun
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier BV]
卷期号:33 (4): 578-590 被引量:5
标识
DOI:10.1016/j.zemedi.2022.08.001
摘要

Background field removal (BFR) is a critical step required for successful quantitative susceptibility mapping (QSM). However, eliminating the background field in brains containing significant susceptibility sources, such as intracranial hemorrhages, is challenging due to the relatively large scale of the field induced by these pathological susceptibility sources.This study proposes a new deep learning-based method, BFRnet, to remove the background field in healthy and hemorrhagic subjects. The network is built with the dual-frequency octave convolutions on the U-net architecture, trained with synthetic field maps containing significant susceptibility sources. The BFRnet method is compared with three conventional BFR methods and one previous deep learning method using simulated and in vivo brains from 4 healthy and 2 hemorrhagic subjects. Robustness against acquisition field-of-view (FOV) orientation and brain masking are also investigated.For both simulation and in vivo experiments, BFRnet led to the best visually appealing results in the local field and QSM results with the minimum contrast loss and the most accurate hemorrhage susceptibility measurements among all five methods. In addition, BFRnet produced the most consistent local field and susceptibility maps between different sizes of brain masks, while conventional methods depend drastically on precise brain extraction and further brain edge erosions. It is also observed that BFRnet performed the best among all BFR methods for acquisition FOVs oblique to the main magnetic field.The proposed BFRnet improved the accuracy of local field reconstruction in the hemorrhagic subjects compared with conventional BFR algorithms. The BFRnet method was effective for acquisitions of tilted orientations and retained whole brains without edge erosion as often required by traditional BFR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Erika采纳,获得10
刚刚
等待的易文完成签到 ,获得积分10
2秒前
丘山完成签到,获得积分10
2秒前
4秒前
英姑应助思维隋采纳,获得10
4秒前
羊村黑恶势力完成签到,获得积分10
5秒前
在水一方应助花花采纳,获得10
6秒前
Rondab应助Jamie2采纳,获得30
7秒前
慕青应助清沐颖涵采纳,获得10
9秒前
10秒前
沸羊羊发布了新的文献求助10
10秒前
10秒前
李y梅子完成签到,获得积分10
11秒前
Jasper应助icm采纳,获得30
11秒前
王提完成签到,获得积分10
12秒前
文艺向日葵完成签到,获得积分20
14秒前
14秒前
迷路安雁发布了新的文献求助10
14秒前
16秒前
passerby完成签到,获得积分10
16秒前
寒冷的匪发布了新的文献求助10
16秒前
huihui完成签到,获得积分10
19秒前
生姜完成签到 ,获得积分10
19秒前
xia发布了新的文献求助10
20秒前
花花发布了新的文献求助10
20秒前
20秒前
22秒前
霸气鹏飞发布了新的文献求助10
22秒前
沸羊羊完成签到,获得积分10
22秒前
沉沉完成签到 ,获得积分0
22秒前
姚裕完成签到,获得积分10
26秒前
26秒前
思维隋发布了新的文献求助10
27秒前
阿梅梅梅发布了新的文献求助30
27秒前
zyw0532完成签到,获得积分10
27秒前
天天快乐应助古月采纳,获得10
28秒前
28秒前
过时的元风完成签到,获得积分10
30秒前
syy完成签到,获得积分10
31秒前
小蘑菇应助Xin采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710