BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources

定量磁化率图 人工智能 计算机科学 深度学习 模式识别(心理学) 生物医学工程 计算机视觉 磁共振成像 医学 放射科
作者
Xuanyu Zhu,Yang Gao,Feng Liu,‪Stuart Crozier‬,Hongfu Sun
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
卷期号:33 (4): 578-590 被引量:5
标识
DOI:10.1016/j.zemedi.2022.08.001
摘要

Background field removal (BFR) is a critical step required for successful quantitative susceptibility mapping (QSM). However, eliminating the background field in brains containing significant susceptibility sources, such as intracranial hemorrhages, is challenging due to the relatively large scale of the field induced by these pathological susceptibility sources.This study proposes a new deep learning-based method, BFRnet, to remove the background field in healthy and hemorrhagic subjects. The network is built with the dual-frequency octave convolutions on the U-net architecture, trained with synthetic field maps containing significant susceptibility sources. The BFRnet method is compared with three conventional BFR methods and one previous deep learning method using simulated and in vivo brains from 4 healthy and 2 hemorrhagic subjects. Robustness against acquisition field-of-view (FOV) orientation and brain masking are also investigated.For both simulation and in vivo experiments, BFRnet led to the best visually appealing results in the local field and QSM results with the minimum contrast loss and the most accurate hemorrhage susceptibility measurements among all five methods. In addition, BFRnet produced the most consistent local field and susceptibility maps between different sizes of brain masks, while conventional methods depend drastically on precise brain extraction and further brain edge erosions. It is also observed that BFRnet performed the best among all BFR methods for acquisition FOVs oblique to the main magnetic field.The proposed BFRnet improved the accuracy of local field reconstruction in the hemorrhagic subjects compared with conventional BFR algorithms. The BFRnet method was effective for acquisitions of tilted orientations and retained whole brains without edge erosion as often required by traditional BFR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻友菱完成签到,获得积分10
1秒前
欢喜大地发布了新的文献求助10
1秒前
2秒前
Mmxn发布了新的文献求助10
2秒前
鸟与野鹿完成签到,获得积分10
2秒前
3秒前
LuckyR完成签到,获得积分10
3秒前
安渝发布了新的文献求助10
3秒前
3秒前
feike发布了新的文献求助10
3秒前
liao应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助lzy采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
liao应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
SSY完成签到,获得积分10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Ava应助挡住所有坏运气888采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
王荷一发布了新的文献求助10
6秒前
Mmxn完成签到,获得积分10
7秒前
7秒前
文心发布了新的文献求助10
7秒前
香蕉觅云应助从容的子轩采纳,获得10
7秒前
研友_VZG7GZ应助二月采纳,获得10
7秒前
流沙完成签到,获得积分10
8秒前
葡萄葡萄发布了新的文献求助10
8秒前
zzzq完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961