MLCPP 2.0: An Updated Cell-penetrating Peptides and Their Uptake Efficiency Predictor

标杆管理 计算机科学 机器学习 人工智能 分类器(UML) 特征(语言学) 特征向量 集合(抽象数据类型) 堆积 支持向量机 数据挖掘 化学 哲学 业务 营销 语言学 有机化学 程序设计语言
作者
Balachandran Manavalan,Mahesh Chandra Patra
出处
期刊:Journal of Molecular Biology [Elsevier]
卷期号:434 (11): 167604-167604 被引量:47
标识
DOI:10.1016/j.jmb.2022.167604
摘要

Cell-penetrating peptides (CPPs) translocate into the cell as various biologically active conjugates and possess numerous biomedical applications. Several machine learning-based predictors have been proposed in the past, but they mostly focus on identifying only CPPs. We proposed a two-layered predictor in 2018 in order to predict CPPs and their uptake efficiency simultaneously. While MLCPP has gained widespread access to research, further improvements are needed to enhance its practical application. A new version of MLCPP is presented in this study called MLCPP 2.0, an interpretable stacking model that identifies CPPs and their strength of uptake efficiency. We updated the benchmarking dataset, explored 17 different sequence-based feature encoding algorithms, and used seven different conventional machine learning classifiers. With multiple 10-fold cross-validation, we constructed 119 baseline models whose predicted probability values were merged and treated as a new feature vector. In a systematic way, a feature set and a classifier are identified that are optimal for predicting the CPP and uptake efficiency separately. The MLCPP 2.0 model achieved outstanding performance on the independent test set, significantly outperforming the existing state-of-the-art predictors. Hence, we expect that our proposed MLCPP 2.0 will facilitate the design of hypothesis-driven experiments by enabling the discovery of novel CPPs. MLCPP 2.0 is freely accessible at https://balalab-skku.org/mlcpp2/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chillin发布了新的文献求助100
1秒前
ddj完成签到 ,获得积分10
1秒前
2秒前
2秒前
巴拉巴拉发布了新的文献求助10
2秒前
3秒前
yyz发布了新的文献求助10
4秒前
5秒前
5秒前
冰晨完成签到,获得积分10
7秒前
老薛发布了新的文献求助10
7秒前
nczpf2010发布了新的文献求助10
8秒前
dudu10000发布了新的文献求助10
9秒前
cjx完成签到,获得积分10
10秒前
wwz应助科研通管家采纳,获得10
11秒前
star应助科研通管家采纳,获得30
11秒前
盒子应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得30
12秒前
情怀应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
美好乐松应助科研通管家采纳,获得10
12秒前
13秒前
ljc完成签到 ,获得积分10
14秒前
科研狗完成签到,获得积分10
14秒前
顺顺尼发布了新的文献求助10
15秒前
pophoo完成签到,获得积分10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023