Attention Guided Global Enhancement and Local Refinement Network for Semantic Segmentation

计算机科学 图像分割 人工智能 分割 模式识别(心理学) 计算机视觉
作者
Jiangyun Li,Sen Zha,Chen Chen,Meng Ding,Tianxiang Zhang,Hong Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3211-3223 被引量:18
标识
DOI:10.1109/tip.2022.3166673
摘要

The encoder-decoder architecture is widely used as a lightweight semantic segmentation network. However, it struggles with a limited performance compared to a well-designed Dilated-FCN model for two major problems. First, commonly used upsampling methods in the decoder such as interpolation and deconvolution suffer from a local receptive field, unable to encode global contexts. Second, low-level features may bring noises to the network decoder through skip connections for the inadequacy of semantic concepts in early encoder layers. To tackle these challenges, a Global Enhancement Method is proposed to aggregate global information from high-level feature maps and adaptively distribute them to different decoder layers, alleviating the shortage of global contexts in the upsampling process. Besides, aLocal Refinement Module is developed by utilizing the decoder features as the semantic guidance to refine the noisy encoder features before the fusion of these two (the decoder features and the encoder features). Then, the two methods are integrated into a Context Fusion Block, and based on that, a novel Attention guided Global enhancement and Local refinement Network (AGLN) is elaborately designed. Extensive experiments on PASCAL Context, ADE20K, and PASCAL VOC 2012 datasets have demonstrated the effectiveness of the proposed approach. In particular, with a vanilla ResNet-101 backbone, AGLN achieves the state-of-the-art result (56.23% mean IOU) on the PASCAL Context dataset. The code is available at https://github.com/zhasen1996/AGLN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助小双采纳,获得10
1秒前
上官发布了新的文献求助30
2秒前
完美世界应助斯文傲芙采纳,获得10
2秒前
3秒前
M.完成签到,获得积分10
4秒前
5秒前
5秒前
WonderHua应助勤奋的千山采纳,获得10
5秒前
so000应助勤奋的千山采纳,获得10
5秒前
李浅墨发布了新的文献求助10
5秒前
so000应助勤奋的千山采纳,获得10
5秒前
5秒前
33发布了新的文献求助10
6秒前
6秒前
怡然灵珊完成签到,获得积分10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
dwls应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
8秒前
欣慰代亦应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
duanhuiyuan应助科研通管家采纳,获得10
8秒前
Akim应助ll采纳,获得30
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
xiaopingbing完成签到 ,获得积分10
8秒前
jerry发布了新的文献求助10
10秒前
黑椒墨鱼发布了新的文献求助10
10秒前
GealAntS完成签到,获得积分0
11秒前
能干耳机发布了新的文献求助10
11秒前
华仔应助细腻的仙人掌采纳,获得10
13秒前
傅勃霖完成签到,获得积分10
13秒前
复杂荧发布了新的文献求助10
13秒前
搜集达人应助33采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178