MRI radiomics independent of clinical baseline characteristics and neoadjuvant treatment modalities predicts response to neoadjuvant therapy in rectal cancer

无线电技术 医学 新辅助治疗 模式 磁共振成像 放射科 肿瘤科 内科学 癌症 乳腺癌 社会科学 社会学
作者
Maxiaowei Song,Shuai Li,Hongzhi Wang,Ke Hu,Fengwei Wang,Huajing Teng,Zhi Wang,Jin Liu,Angela Y. Jia,Yong Cai,Yongheng Li,Xianggao Zhu,Jie Geng,Yangzi Zhang,Xiang-Bo Wan,Weihu Wang
出处
期刊:British Journal of Cancer [Springer Nature]
卷期号:127 (2): 249-257 被引量:14
标识
DOI:10.1038/s41416-022-01786-7
摘要

To analyse the performance of multicentre pre-treatment MRI-based radiomics (MBR) signatures combined with clinical baseline characteristics and neoadjuvant treatment modalities to predict complete response to neoadjuvant (chemo)radiotherapy in locally advanced rectal cancer (LARC).Baseline MRI and clinical characteristics with neoadjuvant treatment modalities at four centres were collected. Decision tree, support vector machine and five-fold cross-validation were applied for two non-imaging and three radiomics-based models' development and validation.We finally included 674 patients. Pre-treatment CEA, T stage, and histologic grade were selected to generate two non-imaging models: C model (clinical baseline characteristics alone) and CT model (clinical baseline characteristics combining neoadjuvant treatment modalities). The prediction performance of both non-imaging models were poor. The MBR signatures comprising 30 selected radiomics features, the MBR signatures combining clinical baseline characteristics (CMBR), and the CMBR incorporating neoadjuvant treatment modalities (CTMBR) all showed good discrimination with mean AUCs of 0.7835, 0.7871 and 0.7916 in validation sets, respectively. The three radiomics-based models had insignificant discrimination in performance.The performance of the radiomics-based models were superior to the non-imaging models. MBR signatures seemed to reflect LARC's true nature more accurately than clinical parameters and helped identify patients who can undergo organ preservation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打爆英语发布了新的文献求助10
刚刚
zy发布了新的文献求助30
刚刚
刚刚
刚刚
嗣音完成签到,获得积分10
1秒前
专注鼠标完成签到,获得积分10
2秒前
2秒前
4秒前
陈有权发布了新的文献求助10
4秒前
Gigi完成签到,获得积分10
4秒前
4秒前
闪shan完成签到,获得积分20
4秒前
情怀应助bigxianyu采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
CINDY完成签到,获得积分10
5秒前
结实的保温杯完成签到,获得积分20
6秒前
鳗鱼灵雁发布了新的文献求助10
6秒前
6秒前
科研通AI5应助WNing采纳,获得10
6秒前
科研通AI5应助ZYP采纳,获得10
7秒前
安静碧灵完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
XW发布了新的文献求助10
9秒前
康zai完成签到,获得积分10
9秒前
hjx关闭了hjx文献求助
9秒前
科研通AI5应助负责的方盒采纳,获得10
9秒前
9秒前
安详的海风完成签到,获得积分10
9秒前
呆萌朝雪完成签到,获得积分20
10秒前
陈有权完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
daidai发布了新的文献求助10
11秒前
小猫宝发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809