Unique-Structure MoS2 Grow on Nickel Foam As Highly Efficient Self-Supported Electrode for Oxygen Evolution Reaction

过电位 材料科学 析氧 线性扫描伏安法 介电谱 化学工程 电催化剂 电化学 催化作用 电解质 电极 循环伏安法 冶金 化学 有机化学 物理化学 工程类
作者
Zizhou He,Hui Guo,Sydney Ardoin,Jed D. Lacoste,Ling Fei
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (29): 1419-1419
标识
DOI:10.1149/ma2019-01/29/1419
摘要

Growing demand for sustainable, clean, efficient energy conversion system has derived tremendous interest to develop cost-effective and highly efficient electrocatalysts for oxygen evolution reaction (OER). Sulfides have recently attracted great attention due to their highly efficient electrocatalytic activity. MoS 2 has been verified as an efficient catalyst toward OER because of its durability, cost-efficiency and high activity. However, binder and extra conductive materials are required to attach electrocatalyst on a conductive substrate which will result in restricted active surface areas, undesirable interfaces and lots of dead volumes. Binder-free self-supported material can eliminate these problems. Herein, we synthesize self-supported binder-free MoS 2 on 3D porous nickel foam (NF) with excellent activity and stability via a facile hydrothermal method. The MoS 2 @NF electrode is tested in 0.1mol KOH by linear sweep voltammetry (LSV), electrochemical surface area (ECSA) and electrochemical impedance spectroscopy (EIS). Compared with different substrates (Cu foam, NF, Cu paper and carbon paper), MoS 2 @NF electrode where NF as substrate shows the lowest overpotential at 10mA cm -2 of 359mV for OER. Furthermore, the overpotential at 10mA cm -2 after 10hr is 419mV, which demonstrates high stability and activity. Such high electrochemical performance may attribute to the following reasons: 1) the large ECSA and good conductivity, that improves utilization of electroactive sites and electron transfer; 2) the unique 3D porous structure, that facilitates electrolyte penetration and reactant/product diffusion; and 3) the sulfur vacancy in MoS 2 , that accelerates the O-H bond breaking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
熊boy完成签到,获得积分10
1秒前
1233完成签到,获得积分10
1秒前
Chang发布了新的文献求助10
1秒前
111222发布了新的文献求助50
1秒前
wxd发布了新的文献求助10
2秒前
上官若男应助浅笑采纳,获得10
3秒前
英姑应助Lxxixixi采纳,获得10
3秒前
斯文败类应助lichaoyes采纳,获得10
3秒前
aaaaa完成签到,获得积分10
3秒前
唉呦嘿发布了新的文献求助10
4秒前
共享精神应助迅速宛筠采纳,获得10
4秒前
上上谦应助酷炫过客采纳,获得10
4秒前
脑洞疼应助酷炫过客采纳,获得10
5秒前
千幻发布了新的文献求助10
5秒前
5秒前
6秒前
英俊的铭应助俎树同采纳,获得10
7秒前
7秒前
liyiren完成签到,获得积分10
8秒前
8秒前
k7完成签到,获得积分10
8秒前
bc发布了新的文献求助10
8秒前
cui123完成签到 ,获得积分10
9秒前
9秒前
10秒前
乐乐应助学海无涯采纳,获得10
10秒前
wxd完成签到,获得积分10
10秒前
嗯嗯嗯完成签到,获得积分10
11秒前
yf_zhu关注了科研通微信公众号
11秒前
mtfx完成签到 ,获得积分10
11秒前
11秒前
帅气惜霜给帅气惜霜的求助进行了留言
11秒前
11秒前
12秒前
12秒前
13秒前
龙华之士发布了新的文献求助10
13秒前
bc完成签到,获得积分10
14秒前
H71000A发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762