Improving the accuracy of stripping voltammetry detection of Cd2+ and Pb2+ in the presence of Cu2+ and Zn2+ by machine learning: Understanding and inhibiting the interactive interference among multiple heavy metals

化学 干扰(通信) 水溶液中的金属离子 分析化学(期刊) 剥离(纤维) 离子 阳极溶出伏安法 伏安法 特征(语言学) 循环伏安法 电化学 模式识别(心理学) 人工智能 计算机科学 环境化学 电极 频道(广播) 材料科学 电信 哲学 物理化学 复合材料 有机化学 语言学
作者
Ning Liu,Wenshuai Ye,Gang Liu,Guo Zhao
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1213: 339956-339956 被引量:20
标识
DOI:10.1016/j.aca.2022.339956
摘要

The application of square-wave anodic stripping voltammetry (SWASV) for the accurate detection of Cd2+ and Pb2+ in soils presents tremendous challenges because of the poor anti-interference on the electrochemical interaction among multiple heavy metal ions (HMIs). To improve the SWASV detection accuracy, it is necessary to deeply understand the interactive interference among multiple ions and then propose an efficient method to inhibit the above interference. In this study, the two-dimensional correlation spectroscopy (2D-COS) method was employed to gain insight into the change degree and sequence in peak currents of various HMIs when subjected to the interference of Cu2+, Zn2+, Pb2+, and Cd2+. The 2D-COS results highlighted the severity and complexity of the interactive interferences that could not be comprehensively reflected by the limited information in stripping peak currents of HMIs. Therefore, the feature currents were mined, which contained abundant information about stripping voltammetry. Then, combining the feature currents with machine learning models, the study built the Feature-RF and Feature-SVR models that significantly improved the detection accuracies of Cd2+ and Pb2+ in the presence of Cu2+ and Zn2+. Finally, the proposed method was used to detect Cd2+ and Pb2+ concentrations in real soil extracts, yielding results close to those of the inductively coupled plasma mass spectrometry (ICP-MS) and recoveries close to 100%, validating its practicability. This study provides new insight into interactive interferences among multiple heavy metal ions in SWASV signals and a new method to improve the SWASV detection accuracy of HMIs in complex matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助wulianlian采纳,获得10
刚刚
田様应助MAKEYF采纳,获得10
2秒前
科研通AI2S应助lvsehx采纳,获得10
2秒前
3秒前
蜗牛完成签到,获得积分10
4秒前
吾问无为谓完成签到,获得积分10
4秒前
袁大头发布了新的文献求助10
4秒前
zhongu发布了新的文献求助10
4秒前
翊然甜周发布了新的文献求助30
4秒前
甜甜的觅夏完成签到,获得积分10
5秒前
ZH发布了新的文献求助10
8秒前
汉堡包应助成就猫咪采纳,获得10
9秒前
霡霂发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
阳佟半仙发布了新的文献求助10
12秒前
Coraline应助YumiPg采纳,获得10
13秒前
15秒前
mzone发布了新的文献求助10
15秒前
乐乐应助xs采纳,获得10
16秒前
咎穆发布了新的文献求助10
16秒前
16秒前
充电宝应助坦率的傲云采纳,获得10
18秒前
nz完成签到,获得积分10
18秒前
小孙孙发布了新的文献求助10
21秒前
21秒前
lvsehx完成签到,获得积分20
23秒前
Hello应助鲜艳的八宝粥采纳,获得10
24秒前
24秒前
正直水池完成签到 ,获得积分10
25秒前
封闭货车发布了新的文献求助10
26秒前
隐形曼青应助鞘皮采纳,获得10
29秒前
炖蛋完成签到,获得积分10
29秒前
炼丹发布了新的文献求助10
29秒前
852应助nulidexin采纳,获得10
31秒前
32秒前
LC发布了新的文献求助10
32秒前
32秒前
zhizhi关注了科研通微信公众号
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432