Simulation of bubble–particle attachment process and estimation of attachment probability using a coupled smoothed particle hydrodynamics–discrete element method model

机械 气泡 粒子(生态学) 离散元法 概率密度函数 惯性 统计物理学 阻力 粒径 光滑粒子流体力学 模拟 物理 数学 经典力学 化学 计算机科学 统计 地质学 海洋学 物理化学
作者
Jinyoung Je,Don-Woo Lee,Jihoe Kwon,Heechan Cho
出处
期刊:Minerals Engineering [Elsevier]
卷期号:183: 107581-107581
标识
DOI:10.1016/j.mineng.2022.107581
摘要

• The bubble (B)–particle (P) attachment process was examined using a coupled SPH–DEM. • The sliding time and the B–P attachment probability were estimated. • The model embodied complex interactions between B and P. • New attachment and net probability models were proposed based on simulation results. • The B–P interactions can be decoupled into hydrodynamic and thermodynamic effects. The bubble–particle attachment is an important step in determining the success of recovery in froth flotation. In this study, the bubble–particle attachment process was investigated using a coupled smoothed particle hydrodynamics (SPH)–discrete element method (DEM) model. The effects of particle inertia and the drag of fluid flow on the particle motion were examined. The sliding time was determined for different particle sizes, densities, and bubble sizes, and the simulated sliding time was compared with the analytical solution and our own experimental results using a high-speed camera. As the particle size and density increased, the sliding time decreased. However, this value was independent of the bubble size. The induction time was calculated as a function of the particle size and contact angle from an empirical model, and it was used to determine the attachment and net probabilities in a dynamic simulation. Based on the SPH–DEM simulation results, novel probability models were developed for bubble–particle interactions. Both attachment and net probabilities could be decoupled into hydrodynamic and thermodynamic effects, given that the collision probability was also derived as a single function of the particle Stokes number. The developed probability models embodying the mutual influence of bubbles and particles can be extended to macroscopically describe flotation cells and evaluate cell performance including particle recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
liyifan发布了新的文献求助10
刚刚
刚刚
老实凝蕊发布了新的文献求助20
1秒前
2秒前
王木木发布了新的文献求助10
2秒前
美满向薇发布了新的文献求助10
3秒前
Sherlock完成签到,获得积分10
3秒前
尼古拉斯发布了新的文献求助10
3秒前
超帅听枫发布了新的文献求助10
3秒前
变化球完成签到,获得积分10
3秒前
李爱国应助欢呼的冷亦采纳,获得30
3秒前
3秒前
Jue发布了新的文献求助10
3秒前
珍惜完成签到,获得积分10
3秒前
4秒前
马马完成签到,获得积分10
4秒前
4秒前
健壮易巧完成签到,获得积分10
5秒前
6秒前
jasmine发布了新的文献求助10
6秒前
Boston完成签到,获得积分10
6秒前
无极微光应助摩卡采纳,获得20
6秒前
傅婷完成签到,获得积分10
6秒前
zhizhimama发布了新的文献求助10
7秒前
如风随水发布了新的文献求助10
7秒前
虞不见王发布了新的文献求助10
7秒前
领导范儿应助刘张有采纳,获得10
7秒前
orixero应助nannan采纳,获得10
7秒前
xuexi完成签到 ,获得积分10
8秒前
8秒前
Ss777sS发布了新的文献求助10
8秒前
qianqian发布了新的文献求助10
8秒前
zuoyou发布了新的文献求助10
9秒前
bkagyin应助chenchen__采纳,获得10
9秒前
苗硕恒发布了新的文献求助10
9秒前
panda发布了新的文献求助10
10秒前
SISI完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608729
求助须知:如何正确求助?哪些是违规求助? 4693458
关于积分的说明 14878149
捐赠科研通 4718291
什么是DOI,文献DOI怎么找? 2544447
邀请新用户注册赠送积分活动 1509484
关于科研通互助平台的介绍 1472883