清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Subcutaneous adipose tissue thickness determination using ultrasound signals processing: A phantom study

成像体模 计算机科学 分割 人工智能 降噪 超声波 模式识别(心理学) 生物医学工程 小波变换 小波 声学 核医学 医学 物理
作者
Mona Hajiasgari,Seyed Kamaledin Setarehdan,Parisa Rangraz
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103744-103744
标识
DOI:10.1016/j.bspc.2022.103744
摘要

According to the top priority of health and fitness, the ultrasound (US) technique for measuring subcutaneous adipose tissue (SAT), as an indicator for body composition analysis, has received the most attention. So, tissue segmentation was performed to determine the boundaries between skin, SAT, and muscle in phantoms with different layers, and thicknesses that were fabricated to simulate tissue layers. The pre-processing of the signal was carried out using wavelet transform (WT) and Hilbert transform for denoising and detection. After the processing step, using WT for signal decomposition, a neural network was trained based on the scan line signals to detect the SAT layer. The coordinates of the convex probe were converted to linear to reduce the time and increase the accuracy for creating the target matrix. The algorithm was designed for automatic measurements of deep (normal), superficial (random), and noisy SAT thickness. Statistical evaluation was done to assess the system's skill in tissue classification and measurement of SAT thickness. Results revealed that most of the features related to coarse levels of detail coefficients extracted from wavelet decomposition levels can be used to build a classifier that can be applied successfully to differentiate between SAT and non-SAT tissue regions with a mean classification accuracy of 94.3% for 20 mm and 92.4% for 4 mm SAT in random mode with the error of estimate 0.05% and 0.07% respectively. Also, using 3 median filters and increasing their lengths from 3 to 7 improved the accuracy results to find SAT entry and exit boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Nancy0818完成签到 ,获得积分10
19秒前
28秒前
36秒前
zzz发布了新的文献求助10
40秒前
LLLKAIXINGUO发布了新的文献求助10
59秒前
zzz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得30
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
武雨寒完成签到 ,获得积分20
2分钟前
方白秋完成签到,获得积分10
2分钟前
LLLKAIXINGUO完成签到,获得积分10
2分钟前
2分钟前
冰凌心恋完成签到,获得积分10
2分钟前
娜娜完成签到 ,获得积分10
3分钟前
细雨听风完成签到,获得积分10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
hyjcs完成签到,获得积分0
3分钟前
as9988776654完成签到 ,获得积分10
4分钟前
默默雪旋完成签到 ,获得积分10
4分钟前
4分钟前
chenyue233完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助50
5分钟前
花园里的蒜完成签到 ,获得积分0
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
loen完成签到,获得积分10
5分钟前
多亿点完成签到 ,获得积分10
6分钟前
shuang完成签到 ,获得积分10
6分钟前
Ava应助michael_suo采纳,获得10
6分钟前
6分钟前
husi发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967