Machine Learning and Deep Learning framework with Feature Selection for Intrusion Detection

人工智能 计算机科学 机器学习 入侵检测系统 特征选择 人工神经网络 深度学习 特征(语言学) 选择(遗传算法) 数据挖掘 哲学 语言学
作者
A. Lakshmanarao,A. Srisaila,T. Srinivasa Ravi Kiran
标识
DOI:10.1109/ic3iot53935.2022.9767727
摘要

Increases in the size of the network and associated data have been a direct effect of technological breakthroughs in the technology and communication areas. As a result, new types of assaults have emerged, making it more difficult for network security systems to identify potential threats. An intrusion Detection is a critical cyber security method that keeps track of the progress of the network's software or hardware. In order to keep up with the ever-increasing rate and diversity of cyber threats, researchers have turned to machine learning approaches to build intrusion detection systems (IDS). Using machine learning algorithms, it is possible to identify with high precision the major differences between normal and abnormal data. In this paper, we proposed three feature selection techniques followed by machine learning and deep learning for IDS. We collected two different datasets and used the ANOVA F-value based method, impurity-based feature selection, and mutual information-based techniques for identifying the best features. Later, we applied three ML algorithms K-NN, Decision Trees, Logistic Regression, and Deep Learning Feed Forward Neural Networks on two datasets and achieved an accuracy of 88%, 99.9% with feed forward neural networks. The results shown that our model performed well compared to conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aria发布了新的文献求助10
1秒前
归尘应助韦一手采纳,获得10
1秒前
愤怒的勒发布了新的文献求助10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
脑洞疼应助阿星捌采纳,获得10
1秒前
zzww发布了新的文献求助10
1秒前
2秒前
过卿完成签到 ,获得积分10
2秒前
阿胡完成签到 ,获得积分10
2秒前
3秒前
亮仔完成签到,获得积分10
3秒前
Theprisoners完成签到,获得积分0
3秒前
ding应助遥不可及采纳,获得10
4秒前
4秒前
柠檬水完成签到,获得积分10
4秒前
4秒前
5秒前
生活的花完成签到,获得积分10
5秒前
5秒前
我我我发布了新的文献求助10
5秒前
6秒前
Magicer发布了新的文献求助10
6秒前
RenHP完成签到,获得积分10
6秒前
Wu发布了新的文献求助10
6秒前
马户的崛起完成签到,获得积分10
7秒前
科研通AI6应助章文荣采纳,获得10
7秒前
kkyy发布了新的文献求助10
7秒前
科研通AI6应助有趣的银采纳,获得10
7秒前
挥发的费洛蒙完成签到,获得积分10
8秒前
hhh完成签到,获得积分10
9秒前
Redback应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
大石头完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研废物采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172