自旋电子学
隧道磁电阻
飞秒
皮秒
超短脉冲
光子学
光电子学
材料科学
隧道枢纽
激光器
纳米技术
制作
计算机科学
作者
Luding Wang,Houyi Cheng,Pingzhi Li,Youri L. W. van Hees,Yang Liu,Kaihua Cao,Reinoud Lavrijsen,Xiaoyang Lin,B. Koopmans,Wei Zhao
标识
DOI:10.1073/pnas.2204732119
摘要
Perpendicular magnetic tunnel junctions are one of the building blocks for spintronic memories, which allow fast nonvolatile data access, offering substantial potentials to revolutionize the mainstream computing architecture. However, conventional switching mechanisms of such devices are fundamentally hindered by spin polarized currents4, either spin transfer torque or spin orbit torque with spin precession time limitation and excessive power dissipation. These physical constraints significantly stimulate the advancement of modern spintronics. Here, we report an optomagnetic tunnel junction using a spintronic-photonic combination. This composite device incorporates an all-optically switchable Co/Gd bilayer coupled to a CoFeB/MgO-based perpendicular magnetic tunnel junction by the Ruderman-Kittel-Kasuya-Yosida interaction. A picosecond all-optical operation of the optomagnetic tunnel junction is explicitly confirmed by time-resolved measurements. Moreover, the device shows a considerable tunnel magnetoresistance and thermal stability. This proof-of-concept device represents an essential step towards ultrafast spintronic memories with THz data access, as well as ultralow power consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI