A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

聚类分析 深度学习 计算机科学 人工智能 概念聚类 机器学习 水准点(测量) 特征学习 分类 代表(政治) 分类学(生物学) 数据科学 模糊聚类 树冠聚类算法 生物 政治 植物 政治学 法学 地理 大地测量学
作者
Sheng Zhou,Hongjia Xu,Zhuonan Zheng,Jiawei Chen,Zhao Li,Jiajun Bu,Jia Wu,Xin Wang,Wenwu Zhu,Martin Ester
出处
期刊:Cornell University - arXiv 被引量:42
标识
DOI:10.48550/arxiv.2206.07579
摘要

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dfhh发布了新的文献求助10
刚刚
小白完成签到,获得积分10
刚刚
wanci应助各方面采纳,获得10
1秒前
1秒前
H2CO3发布了新的文献求助10
2秒前
咻咻完成签到,获得积分10
2秒前
今后应助FionaZhong采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
上官若男应助苏苏采纳,获得10
4秒前
飞飞完成签到 ,获得积分10
5秒前
打打应助宁ning采纳,获得10
6秒前
6秒前
llllx完成签到,获得积分10
7秒前
唠叨的凌雪完成签到,获得积分10
7秒前
dfhh完成签到,获得积分20
7秒前
KYT发布了新的文献求助10
11秒前
11秒前
12秒前
结实的芷蝶完成签到,获得积分10
12秒前
单纯的手机完成签到,获得积分10
13秒前
SciGPT应助负责的方盒采纳,获得10
14秒前
14秒前
追寻依波完成签到,获得积分10
15秒前
小成驳回了英姑应助
16秒前
203发布了新的文献求助10
16秒前
17秒前
18秒前
研友_ZAVod8发布了新的文献求助10
18秒前
18秒前
月饼同学发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
居安关注了科研通微信公众号
22秒前
苏苏发布了新的文献求助10
22秒前
23秒前
子车茗应助温血动物采纳,获得30
23秒前
24秒前
huahuahua发布了新的文献求助20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050917
求助须知:如何正确求助?哪些是违规求助? 4278485
关于积分的说明 13336586
捐赠科研通 4093551
什么是DOI,文献DOI怎么找? 2240413
邀请新用户注册赠送积分活动 1247041
关于科研通互助平台的介绍 1176012