A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

聚类分析 深度学习 计算机科学 人工智能 概念聚类 机器学习 水准点(测量) 特征学习 分类 代表(政治) 分类学(生物学) 数据科学 模糊聚类 树冠聚类算法 生物 政治 植物 政治学 法学 地理 大地测量学
作者
Sheng Zhou,Hongjia Xu,Zhuonan Zheng,Jiawei Chen,Zhao Li,Jiajun Bu,Jia Wu,Xin Wang,Wenwu Zhu,Martin Ester
出处
期刊:Cornell University - arXiv 被引量:42
标识
DOI:10.48550/arxiv.2206.07579
摘要

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的冬灵完成签到 ,获得积分10
刚刚
2秒前
3秒前
肥猫发布了新的文献求助10
3秒前
3秒前
可爱的函函应助过氧化氢采纳,获得30
6秒前
6秒前
锦鲤完成签到 ,获得积分10
7秒前
任性的白玉完成签到 ,获得积分10
7秒前
youwenjing11发布了新的文献求助10
8秒前
山谷完成签到 ,获得积分10
8秒前
钱宇成发布了新的文献求助10
9秒前
科研通AI2S应助感动黄豆采纳,获得10
13秒前
17秒前
18秒前
21秒前
Fengliguantou发布了新的文献求助10
21秒前
猪猪hero发布了新的文献求助10
23秒前
Winner发布了新的文献求助10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得30
26秒前
26秒前
圆锥香蕉应助科研通管家采纳,获得20
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
27秒前
27秒前
感动黄豆发布了新的文献求助10
27秒前
30秒前
搞怪冷风完成签到,获得积分10
31秒前
lucky完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105