A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

聚类分析 深度学习 计算机科学 人工智能 概念聚类 机器学习 水准点(测量) 特征学习 分类 代表(政治) 分类学(生物学) 数据科学 模糊聚类 树冠聚类算法 生物 政治 植物 政治学 法学 地理 大地测量学
作者
Sheng Zhou,Hongjia Xu,Zhuonan Zheng,Jiawei Chen,Zhao Li,Jiajun Bu,Jia Wu,Xin Wang,Wenwu Zhu,Martin Ester
出处
期刊:Cornell University - arXiv 被引量:42
标识
DOI:10.48550/arxiv.2206.07579
摘要

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小小发布了新的文献求助10
刚刚
刚刚
林佳一完成签到,获得积分10
1秒前
YY发布了新的文献求助30
1秒前
布布完成签到,获得积分10
1秒前
勤奋的球球完成签到,获得积分20
5秒前
青馨花语发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助20
7秒前
充电宝应助hl采纳,获得10
7秒前
Ava应助wangjue采纳,获得10
8秒前
踏实含之发布了新的文献求助20
9秒前
11秒前
12秒前
亨先生发布了新的文献求助30
13秒前
彩色的平露完成签到,获得积分10
14秒前
辣椒油油发布了新的文献求助30
14秒前
狂野风华完成签到 ,获得积分10
17秒前
俭朴晓凡完成签到,获得积分20
18秒前
19秒前
20秒前
21秒前
浮游应助舒适静丹采纳,获得10
22秒前
23秒前
24秒前
的速度发布了新的文献求助10
24秒前
香菜完成签到,获得积分10
25秒前
JamesPei应助落后的老太采纳,获得10
26秒前
27秒前
wangjue发布了新的文献求助10
28秒前
万籁的夏天完成签到,获得积分10
29秒前
30秒前
慕青应助Tang采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
踏实含之完成签到,获得积分20
34秒前
34秒前
再学一分钟完成签到,获得积分10
35秒前
且欣且行完成签到 ,获得积分10
35秒前
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553289
求助须知:如何正确求助?哪些是违规求助? 4637819
关于积分的说明 14651261
捐赠科研通 4579708
什么是DOI,文献DOI怎么找? 2511828
邀请新用户注册赠送积分活动 1486770
关于科研通互助平台的介绍 1457694