A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

聚类分析 深度学习 计算机科学 人工智能 概念聚类 机器学习 水准点(测量) 特征学习 分类 代表(政治) 分类学(生物学) 数据科学 模糊聚类 树冠聚类算法 生物 政治 植物 政治学 法学 地理 大地测量学
作者
Sheng Zhou,Hongjia Xu,Zhuonan Zheng,Jiawei Chen,Zhao Li,Jiajun Bu,Jia Wu,Xin Wang,Wenwu Zhu,Martin Ester
出处
期刊:Cornell University - arXiv 被引量:42
标识
DOI:10.48550/arxiv.2206.07579
摘要

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
li发布了新的文献求助10
1秒前
SciGPT应助大白采纳,获得10
2秒前
大吴克发布了新的文献求助10
2秒前
pcm完成签到,获得积分10
2秒前
彭于晏应助Ssyong采纳,获得10
2秒前
CC发布了新的文献求助10
2秒前
宇少爱学习哟完成签到,获得积分10
3秒前
3秒前
Amber应助曹梦梦采纳,获得10
3秒前
科研通AI5应助平淡南霜采纳,获得10
4秒前
小刘不笨发布了新的文献求助10
4秒前
4秒前
GWM发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
novia完成签到,获得积分10
4秒前
东郭南松发布了新的文献求助10
5秒前
经法发布了新的文献求助10
5秒前
韭菜盒子发布了新的文献求助10
5秒前
donk完成签到 ,获得积分10
6秒前
传奇3应助lx采纳,获得10
6秒前
7秒前
华仔应助bluer采纳,获得10
7秒前
poo1900完成签到,获得积分10
7秒前
ssx完成签到,获得积分10
7秒前
7秒前
xuanxuan完成签到,获得积分10
7秒前
CyrusSo524完成签到,获得积分10
7秒前
7秒前
格格星完成签到,获得积分10
8秒前
jackish完成签到,获得积分10
8秒前
8秒前
8秒前
英姑应助温柔若采纳,获得10
8秒前
9秒前
熠熠完成签到,获得积分10
11秒前
wangping发布了新的文献求助10
11秒前
李爱国应助小豆芽儿采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678