A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

聚类分析 深度学习 计算机科学 人工智能 概念聚类 机器学习 水准点(测量) 特征学习 分类 代表(政治) 分类学(生物学) 数据科学 模糊聚类 树冠聚类算法 植物 大地测量学 政治 政治学 法学 生物 地理
作者
Sheng Zhou,Hongjia Xu,Zhuonan Zheng,Jiawei Chen,Zhao Li,Jiajun Bu,Jia Wu,Xin Wang,Wenwu Zhu,Martin Ester
出处
期刊:Cornell University - arXiv 被引量:41
标识
DOI:10.48550/arxiv.2206.07579
摘要

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助于胜男采纳,获得10
刚刚
乐乐完成签到,获得积分10
刚刚
昀宇发布了新的文献求助10
1秒前
情怀应助西伯侯采纳,获得10
1秒前
细腻的灵槐完成签到 ,获得积分10
2秒前
Joey发布了新的文献求助20
2秒前
gent完成签到,获得积分10
2秒前
画个圈圈恋上荣完成签到,获得积分10
4秒前
辜月十二完成签到 ,获得积分10
4秒前
Owen应助夏季霸吹采纳,获得10
4秒前
失眠鸭完成签到,获得积分10
5秒前
刘明锐完成签到,获得积分10
5秒前
6秒前
科目三应助啦啦啦啦采纳,获得10
6秒前
gent发布了新的文献求助10
6秒前
wwc应助MQRR采纳,获得10
7秒前
咩咩羊完成签到,获得积分10
7秒前
爆米花应助Fjun采纳,获得10
9秒前
诸葛不亮完成签到 ,获得积分10
10秒前
羊村第一巴图鲁完成签到,获得积分10
10秒前
dake发布了新的文献求助10
11秒前
11秒前
freedom完成签到 ,获得积分10
12秒前
小马甲应助板凳采纳,获得10
12秒前
14秒前
故意的诗筠完成签到,获得积分10
14秒前
15秒前
菲莳完成签到 ,获得积分10
16秒前
田田发布了新的文献求助10
16秒前
dake完成签到,获得积分10
17秒前
南风发布了新的文献求助10
21秒前
22秒前
hashtag发布了新的文献求助10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
23秒前
劲秉应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
24秒前
pluto应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574