Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚佳蕊发布了新的文献求助10
刚刚
大壮发布了新的文献求助10
刚刚
可爱的函函应助Azaspiro采纳,获得10
刚刚
kitty完成签到,获得积分10
刚刚
Krystal完成签到,获得积分10
刚刚
hhhhuo完成签到,获得积分10
刚刚
2秒前
江山发布了新的文献求助10
2秒前
2秒前
从不内卷发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
ZORO发布了新的文献求助10
3秒前
3秒前
莫仔发布了新的文献求助10
3秒前
3秒前
852应助壮观的人龙采纳,获得10
3秒前
4秒前
4秒前
无尘泪发布了新的文献求助20
4秒前
4秒前
yoyo发布了新的文献求助10
5秒前
搜集达人应助嘿嘿嘿采纳,获得10
5秒前
ggbang完成签到,获得积分10
5秒前
洁净静竹发布了新的文献求助10
5秒前
温瞳发布了新的文献求助10
5秒前
江晓婷完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
大胆的忆安完成签到,获得积分10
6秒前
6秒前
Maestro_S应助Tao采纳,获得10
7秒前
炙热芷蕊发布了新的文献求助10
7秒前
NexusExplorer应助Yau采纳,获得10
7秒前
7秒前
8秒前
乐乐应助多多采纳,获得10
8秒前
思愉发布了新的文献求助10
8秒前
橘子叶发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668