Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱紫祎应助文件撤销了驳回
刚刚
1秒前
peng1发布了新的文献求助10
1秒前
1秒前
2秒前
bkagyin应助自由元菱采纳,获得10
2秒前
粽子完成签到,获得积分10
3秒前
研友_VZG7GZ应助谢梓良采纳,获得10
3秒前
4秒前
4秒前
5秒前
小马甲应助没有熬夜采纳,获得10
5秒前
懒懒发布了新的文献求助10
6秒前
7秒前
哈哈发布了新的文献求助10
7秒前
上官若男应助Wri采纳,获得10
7秒前
研友_VZG7GZ应助满意的不二采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
谢梓良完成签到,获得积分10
10秒前
10秒前
平常寻冬发布了新的文献求助50
10秒前
深情安青应助Cdws采纳,获得10
10秒前
12秒前
12秒前
12秒前
12秒前
赘婿应助何处芳歇采纳,获得10
13秒前
核桃发布了新的文献求助10
13秒前
14秒前
跃天杜完成签到,获得积分10
14秒前
ssllmm发布了新的文献求助10
15秒前
15秒前
北望发布了新的文献求助20
17秒前
英俊的铭应助天际采纳,获得10
17秒前
cqwswfl发布了新的文献求助10
17秒前
Ffan完成签到 ,获得积分10
17秒前
懒懒完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736