Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳雪儿发布了新的文献求助30
刚刚
刚刚
坤坤探花发布了新的文献求助10
2秒前
2秒前
2秒前
fleurie发布了新的文献求助10
2秒前
微血管完成签到,获得积分10
2秒前
2秒前
3秒前
vivi完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
jewel9发布了新的文献求助10
3秒前
zl987发布了新的文献求助10
3秒前
俱乐部完成签到,获得积分10
4秒前
4秒前
健壮听露发布了新的文献求助10
4秒前
胖胖发布了新的文献求助10
4秒前
loong应助Felix0917采纳,获得20
5秒前
5秒前
快乐科研完成签到,获得积分10
6秒前
Xxil发布了新的文献求助10
6秒前
xiaoming发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
今后应助有颗柚子采纳,获得10
7秒前
小鱼干儿发布了新的文献求助10
8秒前
哇哈哈发布了新的文献求助10
8秒前
8秒前
苗苗发布了新的文献求助10
9秒前
无花果应助薯片采纳,获得10
9秒前
卡痰的长颈鹿完成签到,获得积分10
10秒前
念l完成签到 ,获得积分10
10秒前
adi完成签到,获得积分10
10秒前
imyunxu完成签到,获得积分10
11秒前
petiteblanche发布了新的文献求助10
11秒前
杨先生发布了新的文献求助30
12秒前
jing发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171