Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu完成签到,获得积分10
刚刚
平常的雁凡完成签到,获得积分10
刚刚
城南她似海完成签到 ,获得积分10
刚刚
杨衡完成签到,获得积分10
刚刚
dongdong完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
bkagyin应助周老八采纳,获得10
2秒前
胡图图完成签到,获得积分10
2秒前
收手吧大哥发布了新的文献求助100
2秒前
李瑞完成签到,获得积分10
3秒前
传奇3应助勤恳的红酒采纳,获得10
3秒前
RowanLuo完成签到,获得积分10
3秒前
菟丝子完成签到,获得积分10
3秒前
ztt27999完成签到,获得积分10
3秒前
哈哈李完成签到,获得积分10
4秒前
sjlu完成签到,获得积分10
4秒前
Samuel_完成签到,获得积分10
5秒前
所所应助栾瑜宝采纳,获得10
6秒前
迷人紫寒完成签到,获得积分10
6秒前
XIAOWANG发布了新的文献求助10
8秒前
8秒前
现代小丸子完成签到 ,获得积分10
8秒前
搞怪的又蓝应助从容幻儿采纳,获得10
9秒前
9秒前
章鱼完成签到,获得积分10
9秒前
再美完成签到,获得积分10
10秒前
meww发布了新的文献求助10
10秒前
石头完成签到,获得积分10
10秒前
脑袋空空完成签到,获得积分10
10秒前
海盐发布了新的文献求助10
11秒前
大王完成签到,获得积分10
11秒前
11秒前
整齐的不评完成签到,获得积分10
12秒前
魔幻哈密瓜完成签到,获得积分20
12秒前
平淡远山发布了新的文献求助10
12秒前
pcr163应助收手吧大哥采纳,获得100
13秒前
安详的嵩应助JY'采纳,获得10
13秒前
冯大哥完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259