Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助一瓶罐采纳,获得10
1秒前
petrichor发布了新的文献求助10
1秒前
美丽的莫茗关注了科研通微信公众号
1秒前
2秒前
左左完成签到,获得积分10
2秒前
白皮憨憨发布了新的文献求助10
2秒前
解青文完成签到,获得积分20
2秒前
2秒前
午夜时分收病人完成签到,获得积分10
4秒前
liuyy完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
10秒前
88888完成签到,获得积分10
10秒前
Jasper应助petrichor采纳,获得10
10秒前
HEIKU应助抱大佬大腿采纳,获得10
11秒前
Roseaiwade发布了新的文献求助10
12秒前
文静野狼发布了新的文献求助10
12秒前
砍柴少年发布了新的文献求助10
13秒前
白白完成签到,获得积分20
13秒前
李健应助邹葶采纳,获得10
14秒前
15秒前
15秒前
17秒前
18秒前
Ava应助MAVS采纳,获得10
18秒前
为不争发布了新的文献求助10
19秒前
20秒前
zoe完成签到,获得积分10
20秒前
香蕉觅云应助砍柴少年采纳,获得10
21秒前
源源发布了新的文献求助10
22秒前
起风完成签到,获得积分10
22秒前
23秒前
26秒前
27秒前
白皮憨憨完成签到,获得积分10
29秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302671
求助须知:如何正确求助?哪些是违规求助? 2937033
关于积分的说明 8480339
捐赠科研通 2610962
什么是DOI,文献DOI怎么找? 1425486
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646746