Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的127完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
2339822272发布了新的文献求助10
3秒前
星星完成签到,获得积分10
3秒前
幸运兔发布了新的文献求助10
4秒前
上官若男应助wqx采纳,获得10
4秒前
月亮邮递员完成签到,获得积分10
6秒前
222完成签到 ,获得积分10
6秒前
Likj完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
异氰酸正丙酯完成签到 ,获得积分10
8秒前
wsc发布了新的文献求助10
8秒前
幸运兔完成签到,获得积分10
9秒前
曾祥钰完成签到 ,获得积分10
10秒前
11秒前
11秒前
bkagyin应助XM采纳,获得10
11秒前
11秒前
芒果糯米球完成签到,获得积分10
13秒前
未来完成签到,获得积分10
15秒前
15秒前
nuonuo发布了新的文献求助10
15秒前
15秒前
橙子发布了新的文献求助30
15秒前
海洋发布了新的文献求助10
16秒前
万能图书馆应助黄123huang_采纳,获得10
16秒前
丘比特应助tengfei采纳,获得10
17秒前
Cody发布了新的文献求助10
17秒前
lamer完成签到 ,获得积分10
17秒前
20秒前
21秒前
糖糖完成签到,获得积分20
22秒前
哇塞啊发布了新的文献求助10
22秒前
要减肥的歌曲完成签到,获得积分20
22秒前
22秒前
Watson完成签到,获得积分10
22秒前
Agu完成签到,获得积分10
23秒前
orixero应助balabala采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333