Analysis of Prognostic Factors of Rectal Cancer and Construction of a Prognostic Prediction Model Based on Bayesian Network

列线图 医学 癌胚抗原 单变量 肿瘤科 内科学 阶段(地层学) 比例危险模型 接收机工作特性 结直肠癌 T级 多元分析 预测模型 线性判别分析 克拉斯 癌症 多元统计 机器学习 人工智能 计算机科学 总体生存率 古生物学 生物
作者
Ruikai Li,Chi Zhang,Kunli Du,Hanjun Dan,Ruxin Ding,Zhiqiang Cai,Lili Duan,Zhenyu Xie,Gaozan Zheng,Hongze Wu,Guoqing Ren,Xinyu Dou,Fan Feng,Jun Zheng
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:4
标识
DOI:10.3389/fpubh.2022.842970
摘要

The existing prognostic models of rectal cancer after radical resection ignored the relationships among prognostic factors and their mutual effects on prognosis. Thus, a new modeling method is required to remedy this defect. The present study aimed to construct a new prognostic prediction model based on the Bayesian network (BN), a machine learning tool for data mining, clinical decision-making, and prognostic prediction.From January 2015 to December 2017, the clinical data of 705 patients with rectal cancer who underwent radical resection were analyzed. The entire cohort was divided into training and testing datasets. A new prognostic prediction model based on BN was constructed and compared with a nomogram.A univariate analysis showed that age, Carcinoembryonic antigen (CEA), Carbohydrate antigen19-9 (CA19-9), Carbohydrate antigen 125 (CA125), preoperative chemotherapy, macropathology type, tumor size, differentiation status, T stage, N stage, vascular invasion, KRAS mutation, and postoperative chemotherapy were associated with overall survival (OS) of the training dataset. Based on the above-mentioned variables, a 3-year OS prognostic prediction BN model of the training dataset was constructed using the Tree Augmented Naïve Bayes method. In addition, age, CEA, CA19-9, CA125, differentiation status, T stage, N stage, KRAS mutation, and postoperative chemotherapy were identified as independent prognostic factors of the training dataset through multivariate Cox regression and were used to construct a nomogram. Then, based on the testing dataset, the two models were evaluated using the receiver operating characteristic (ROC) curve. The results showed that the area under the curve (AUC) of ROC of the BN model and nomogram was 80.11 and 74.23%, respectively.The present study established a BN model for prognostic prediction of rectal cancer for the first time, which was demonstrated to be more accurate than a nomogram.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DumBell完成签到,获得积分10
刚刚
Dawin发布了新的文献求助10
1秒前
东方半仙完成签到 ,获得积分10
1秒前
豆花完成签到,获得积分10
2秒前
可颂完成签到 ,获得积分10
2秒前
mp5完成签到,获得积分10
3秒前
Yang22完成签到,获得积分10
3秒前
狂野的驳发布了新的文献求助10
3秒前
好好学习完成签到,获得积分0
3秒前
汤汤完成签到,获得积分10
4秒前
钰泠完成签到 ,获得积分10
4秒前
4秒前
威武好吐司完成签到 ,获得积分10
5秒前
畅快的饼干完成签到 ,获得积分10
6秒前
Orange应助XYZ采纳,获得10
6秒前
logan完成签到,获得积分10
6秒前
医痞子完成签到,获得积分10
7秒前
8秒前
江小鱼在查文献完成签到,获得积分10
10秒前
Dawin完成签到,获得积分10
12秒前
向往完成签到 ,获得积分10
12秒前
13秒前
沉默的靖儿完成签到 ,获得积分10
13秒前
冯涛完成签到,获得积分10
13秒前
谢谢完成签到,获得积分10
14秒前
15秒前
同行完成签到 ,获得积分10
16秒前
16秒前
科研通AI6应助vivian采纳,获得10
17秒前
情怀应助vivian采纳,获得10
17秒前
18秒前
狂野的驳完成签到 ,获得积分20
18秒前
drpengan关注了科研通微信公众号
18秒前
19秒前
谢谢发布了新的文献求助10
20秒前
七十完成签到,获得积分20
20秒前
20秒前
完美世界应助歪比八不采纳,获得10
21秒前
眼睛大的薯片完成签到 ,获得积分10
21秒前
Einson完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565300
求助须知:如何正确求助?哪些是违规求助? 4650273
关于积分的说明 14690344
捐赠科研通 4592143
什么是DOI,文献DOI怎么找? 2519466
邀请新用户注册赠送积分活动 1491956
关于科研通互助平台的介绍 1463168