亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Based Analytics of Multisource Heterogeneous Bridge Data for Enhanced Data-Driven Bridge Deterioration Prediction

桥(图论) 计算机科学 数据挖掘 机器学习 工程类 人工智能 内科学 医学
作者
Kaijian Liu,Nora El-Gohary
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (5) 被引量:6
标识
DOI:10.1061/(asce)cp.1943-5487.0001018
摘要

Existing data-driven bridge deterioration prediction methods mostly learn from abstract inventory data from a single source to predict the future conditions of bridges. Bridge inventory data [e.g., the National Bridge Inventory (NBI) data] are undoubtedly important but are not enough. They mainly describe bridge conditions using abstract, aggregated condition ratings that do not contain detailed information about bridge deficiencies and maintenance actions, thus limiting the performance of data-driven deterioration prediction and its usefulness in supporting bridge maintenance decision making. Learning from the wealth of heterogeneous (i.e., structured and unstructured) bridge data from multiple sources opens an unprecedented opportunity for enhanced data-driven bridge deterioration prediction. Such data include structured NBI and National Bridge Elements (NBE) data, structured traffic and weather data, and unstructured textual bridge inspection reports. To capitalize on this opportunity, this paper proposes a novel bridge data analytics framework, which allows for the extraction, integration, and analysis of structured and unstructured bridge data from different sources. At the cornerstone of this framework is a proposed deep learning–based bridge deterioration prediction method for analyzing and learning from the integrated bridge data to predict bridge deterioration. The proposed method includes three primary components: manifold learning for embedding the integrated bridge data into a low-dimensional dense space, cost-sensitive learning for modulating the misclassification costs to address the class imbalance in the data, and recurrent neural networks for learning from the embedded and balanced data from past years to predict the conditions of the primary bridge components (decks, superstructures, and substructures) in the next year. The method was evaluated in predicting the condition ratings of the decks, superstructures, and substructures of 2,646 bridges in the state of Washington. It achieved an average macroprecision and macrorecall of 89.9% and 85.8%, which are 15.0% and 22.4% higher than those achieved by learning from only NBI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助爱撒娇的曼凝采纳,获得10
7秒前
chen完成签到 ,获得积分10
14秒前
Wang完成签到 ,获得积分20
25秒前
赘婿应助天马行空采纳,获得10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
1分钟前
天马行空完成签到,获得积分20
1分钟前
天马行空发布了新的文献求助10
1分钟前
1分钟前
李健应助枯藤老柳树采纳,获得10
2分钟前
孤独蘑菇完成签到 ,获得积分10
2分钟前
8R60d8应助科研通管家采纳,获得10
3分钟前
8R60d8应助科研通管家采纳,获得10
3分钟前
8R60d8应助科研通管家采纳,获得10
3分钟前
8R60d8应助科研通管家采纳,获得10
3分钟前
3分钟前
快乐小狗发布了新的文献求助30
3分钟前
zoelir729发布了新的文献求助10
3分钟前
zoelir729完成签到,获得积分10
3分钟前
天天快乐应助自由隶采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
充电宝应助快乐小狗采纳,获得10
4分钟前
ding应助枯藤老柳树采纳,获得10
4分钟前
研友_R2D2完成签到,获得积分10
4分钟前
无私的含海完成签到,获得积分10
4分钟前
黄花菜完成签到 ,获得积分10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
4分钟前
HEIKU应助无私的含海采纳,获得10
4分钟前
5分钟前
爱撒娇的曼凝完成签到,获得积分10
5分钟前
8R60d8应助科研通管家采纳,获得10
5分钟前
5分钟前
自由隶发布了新的文献求助10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787970
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997