Development of Mathematical Model and Characterization of Internal Surface Obtained by Elasto-Abrasives Magneto-Spiral Finishing (EAMSF)

磨料 材料科学 磁场 表面粗糙度 复合材料 表面处理 表面光洁度 机械工程 工程类 物理 量子力学
作者
Shivam Yadav,Amit Sangoi,Raju Pawade
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:144 (11) 被引量:2
标识
DOI:10.1115/1.4054936
摘要

Abstract The implantation of stents and instruments with capillary action demands super-finished internal surfaces of the manufactured product. Elasto-abrasives magneto-spiral finishing (EAMSF) is the attempt made in this paper to enhance finishing productivity by incorporating the abrasive flow in spiral motion due to the presence of the magnetic field. Here, novel impregnated elasto-magnetic abrasive particles (IMPs) are used in a magnetic field-assisted environment to polish the inner walls of the workpiece. In EAMSF, magnetic force provides excess finishing pressure to the abrasives. In contrast, the high-impact polystyrene (HIPS) elasticity absorbs the extra force of the IMPs on the finishing surface. An Indigenous mathematical relation considering the physics of this superfinishing process indicating material removal shows a close resemblance to the experimental results with an error percentage of 1.03 has been developed. The results of the experimentation reveal that 50% concentration of abrasives and a magnetic field density of 18mT yield a superior surface finish with a Ra value equal to 0.053 µm and maximum material removal of 6.9 mg, while in the absence of a magnetic field, excellent surface finish with a Ra = 0.266 µm and maximum material removal of 5.4 mg is achieved. In the presence of magnetic field density, significant enhancement of material removal, surface finish, and burr removal is observed. Finishing the surface at 50% abrasive concentration with a magnetic field represents regular finishing, and the trench marks on the original surface are removed after finishing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的芸遥完成签到 ,获得积分10
刚刚
刚刚
CC应助明理的幻悲采纳,获得10
刚刚
斯文鸡发布了新的文献求助20
1秒前
今后应助泥花采纳,获得10
1秒前
烟花应助小张z采纳,获得10
1秒前
醒醒完成签到,获得积分10
1秒前
ustcliyang发布了新的文献求助10
2秒前
2秒前
科研通AI5应助Nyquist采纳,获得10
2秒前
3秒前
若南关注了科研通微信公众号
3秒前
852应助jirry采纳,获得10
3秒前
ls发布了新的文献求助10
3秒前
CIOOICO1完成签到,获得积分10
4秒前
4秒前
simple完成签到,获得积分10
4秒前
烟花应助HHHHH采纳,获得10
4秒前
LL完成签到,获得积分20
4秒前
赵子轩发布了新的文献求助10
4秒前
123木头人完成签到,获得积分10
5秒前
5秒前
123123发布了新的文献求助10
5秒前
传奇3应助三杠采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
冷静的奇迹完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
kingwill给XSY的求助进行了留言
8秒前
LL发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383