Contemporary Approaches to Analyze Non-stationary Time-series: Some Solutions and Challenges

随机性 计算机科学 跳跃 聚类分析 时间序列 系列(地层学) 数据科学 数据挖掘 表(数据库) 计量经济学 工业工程 人工智能 机器学习 数学 统计 工程类 经济 古生物学 金融经济学 生物
作者
Ankit Dixit,Shikha Jain
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (2)
标识
DOI:10.2174/2666255815666220523125447
摘要

Abstract: Enhancement of technology yields more complex time-dependent outcomes for better understanding and analysis. These outcomes are generating more complex, unstable, and high-dimensional data from non-stationary environments. Hence, more challenges are arising day by day to fulfill the increasing demand for future estimation. Thus, in this paper, an extensive study has been presented to comprehend the statistical complexity and randomness of non-stationary time series (NS-TS) data at the atomic level. This survey briefly explains the basic principles and terms related to non-stationary time series (NS-TS). After understanding the fundamentals of NS-TS, this survey categorized non-stationarity into groups and their subgroups based on a change in statistical behavior. It is followed by a comprehensive discussion on contemporary approaches proposed by researchers in each category of non-stationarity. These algorithms include clustering, classification, and regression techniques to deal with different types of domains. Every category of non-stationarity consists of a separate table to draw some advantages and disadvantages of existing approaches. At the end of each non-stationarity type, a short discussion and critical analysis have been done. In the conclusion section, it observed that this research sphere still has so many open challenges that need to be addressed and demand more exploration. Furthermore, it discusses the possible solution of improvisation in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助卷卷王采纳,获得10
1秒前
可爱的函函应助梦里采纳,获得10
1秒前
沐晴完成签到,获得积分10
2秒前
入夏完成签到,获得积分10
2秒前
2秒前
2秒前
苏州小北发布了新的文献求助10
3秒前
3秒前
snail完成签到,获得积分10
4秒前
劈里啪啦完成签到,获得积分10
4秒前
wanci应助Jasmine采纳,获得10
5秒前
aoxiangcaizi12完成签到,获得积分10
5秒前
ding应助通~采纳,获得30
6秒前
7秒前
Annie发布了新的文献求助10
7秒前
晨曦完成签到,获得积分10
8秒前
十一发布了新的文献求助10
8秒前
顾矜应助Peter采纳,获得30
9秒前
Ayanami完成签到,获得积分10
9秒前
英俊的铭应助ysl采纳,获得30
9秒前
酷波er应助范范采纳,获得10
9秒前
10秒前
Akim应助damian采纳,获得30
10秒前
10秒前
12秒前
番茄炒西红柿完成签到,获得积分10
13秒前
无限安蕾完成签到,获得积分10
13秒前
13秒前
飘逸蘑菇发布了新的文献求助10
14秒前
混沌完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
xg发布了新的文献求助10
16秒前
看看发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
Annie完成签到,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794